Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel test identifies lymphoma patients likely to respond to new therapy

Researchers at the Albert Einstein College of Medicine of Yeshiva University have discovered a genetic signature identifying cases of lymphoma that are uniquely susceptible to a newly developed molecular targeted therapy. As a result, physicians organizing clinical trials of the new therapy will be able to enroll patients who’ll be most likely to benefit from it.

The research was led by Dr. Ari Melnick, assistant professor of developmental & molecular biology and medicine at Einstein, who also developed the new lymphoma therapy. The study appears in the February 20 issue of the Proceedings of the National Academy of Sciences.

Each year more than 60,000 Americans are diagnosed with B cell lymphomas—tumors of cells of the immune system that include Hodgkin’s and non-Hodgkin’s lymphomas. B cells are the immune- system cells that make antibodies. Genetic aberrations can cause B cells to multiply uncontrollably, causing B cell lymphomas.

Dr. Melnick’s study focused on a gene called BCL6. The protein it codes for is a transcriptional repressor, which means that it can shut off the functioning of genes in B cells and other cells of the immune system and prevent them from being expressed. The BCL6 protein is normally produced only during a specific stage of B cell development and is never made again. But deregulation of BCL6 can cause the protein to be produced when it shouldn’t be. The unwelcome presence of the BCL6 protein blocks the expression of important genes that normally protect cells from becoming cancerous. As a result, malignant B-cell lymphomas occur.

Mutations or chromosomal rearrangements that deregulate BCL6 are responsible for many cases of diffuse large B cell lymphoma—an aggressive cancer that accounts for up to 30 percent of newly diagnosed non-Hodgkin’s lymphoma cases. In a 2004 Nature Medicine article, Dr. Melnick and colleagues described a peptide, which they dubbed BPI, that showed promise in treating B-cell lymphomas by specifically blocking the cancer-causing effects of the BCL6 protein. But until now, there has been no way to distinguish between diffuse large B cell lymphomas that are caused by BCL6 deregulation and those cases in which BCL6 is expressed but doesn’t actually drive the cancer.

Dr. Melnick reasoned that those diffuse large B cell lymphomas that are caused by BCL6 deregulation should have a characteristic “signature” in which the genes targeted by the BCL6 protein are either expressed (turned on) or not expressed. The researchers used state-of-the-art genomics technology to analyze a panel of diffuse large B cell lymphoma cell lines. They found a set of 485 BCL6-controlled genes and confirmed that all lymphomas with the BCL6 signature are killed by BPI while lymphomas without the signature are resistant to the therapy.

“Suitable lymphoma patients—those whose tumor cells exhibit this BCL6 signature --will now have access to a potent and specific therapy that is unlikely to cause the side effects associated with chemotherapy drugs,” says Dr. Melnick. “At the same time, lymphoma patients who don’t fit this genetic profile will be spared a drug treatment that would be ineffective for them.”

Other Einstein scientists involved in the study were Jose M. Polo, Leandro Cerchietti, Kenny Ye and John M. Greally. The researchers also included Przemyslaw Juszczynski and Margaret Shipp of the Dana-Farber Cancer Institute and Stefano Monti of the Broad Institute.

Karen Gardner | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>