Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel test identifies lymphoma patients likely to respond to new therapy

22.02.2007
Researchers at the Albert Einstein College of Medicine of Yeshiva University have discovered a genetic signature identifying cases of lymphoma that are uniquely susceptible to a newly developed molecular targeted therapy. As a result, physicians organizing clinical trials of the new therapy will be able to enroll patients who’ll be most likely to benefit from it.

The research was led by Dr. Ari Melnick, assistant professor of developmental & molecular biology and medicine at Einstein, who also developed the new lymphoma therapy. The study appears in the February 20 issue of the Proceedings of the National Academy of Sciences.

Each year more than 60,000 Americans are diagnosed with B cell lymphomas—tumors of cells of the immune system that include Hodgkin’s and non-Hodgkin’s lymphomas. B cells are the immune- system cells that make antibodies. Genetic aberrations can cause B cells to multiply uncontrollably, causing B cell lymphomas.

Dr. Melnick’s study focused on a gene called BCL6. The protein it codes for is a transcriptional repressor, which means that it can shut off the functioning of genes in B cells and other cells of the immune system and prevent them from being expressed. The BCL6 protein is normally produced only during a specific stage of B cell development and is never made again. But deregulation of BCL6 can cause the protein to be produced when it shouldn’t be. The unwelcome presence of the BCL6 protein blocks the expression of important genes that normally protect cells from becoming cancerous. As a result, malignant B-cell lymphomas occur.

Mutations or chromosomal rearrangements that deregulate BCL6 are responsible for many cases of diffuse large B cell lymphoma—an aggressive cancer that accounts for up to 30 percent of newly diagnosed non-Hodgkin’s lymphoma cases. In a 2004 Nature Medicine article, Dr. Melnick and colleagues described a peptide, which they dubbed BPI, that showed promise in treating B-cell lymphomas by specifically blocking the cancer-causing effects of the BCL6 protein. But until now, there has been no way to distinguish between diffuse large B cell lymphomas that are caused by BCL6 deregulation and those cases in which BCL6 is expressed but doesn’t actually drive the cancer.

Dr. Melnick reasoned that those diffuse large B cell lymphomas that are caused by BCL6 deregulation should have a characteristic “signature” in which the genes targeted by the BCL6 protein are either expressed (turned on) or not expressed. The researchers used state-of-the-art genomics technology to analyze a panel of diffuse large B cell lymphoma cell lines. They found a set of 485 BCL6-controlled genes and confirmed that all lymphomas with the BCL6 signature are killed by BPI while lymphomas without the signature are resistant to the therapy.

“Suitable lymphoma patients—those whose tumor cells exhibit this BCL6 signature --will now have access to a potent and specific therapy that is unlikely to cause the side effects associated with chemotherapy drugs,” says Dr. Melnick. “At the same time, lymphoma patients who don’t fit this genetic profile will be spared a drug treatment that would be ineffective for them.”

Other Einstein scientists involved in the study were Jose M. Polo, Leandro Cerchietti, Kenny Ye and John M. Greally. The researchers also included Przemyslaw Juszczynski and Margaret Shipp of the Dana-Farber Cancer Institute and Stefano Monti of the Broad Institute.

Karen Gardner | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>