Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel test identifies lymphoma patients likely to respond to new therapy

22.02.2007
Researchers at the Albert Einstein College of Medicine of Yeshiva University have discovered a genetic signature identifying cases of lymphoma that are uniquely susceptible to a newly developed molecular targeted therapy. As a result, physicians organizing clinical trials of the new therapy will be able to enroll patients who’ll be most likely to benefit from it.

The research was led by Dr. Ari Melnick, assistant professor of developmental & molecular biology and medicine at Einstein, who also developed the new lymphoma therapy. The study appears in the February 20 issue of the Proceedings of the National Academy of Sciences.

Each year more than 60,000 Americans are diagnosed with B cell lymphomas—tumors of cells of the immune system that include Hodgkin’s and non-Hodgkin’s lymphomas. B cells are the immune- system cells that make antibodies. Genetic aberrations can cause B cells to multiply uncontrollably, causing B cell lymphomas.

Dr. Melnick’s study focused on a gene called BCL6. The protein it codes for is a transcriptional repressor, which means that it can shut off the functioning of genes in B cells and other cells of the immune system and prevent them from being expressed. The BCL6 protein is normally produced only during a specific stage of B cell development and is never made again. But deregulation of BCL6 can cause the protein to be produced when it shouldn’t be. The unwelcome presence of the BCL6 protein blocks the expression of important genes that normally protect cells from becoming cancerous. As a result, malignant B-cell lymphomas occur.

Mutations or chromosomal rearrangements that deregulate BCL6 are responsible for many cases of diffuse large B cell lymphoma—an aggressive cancer that accounts for up to 30 percent of newly diagnosed non-Hodgkin’s lymphoma cases. In a 2004 Nature Medicine article, Dr. Melnick and colleagues described a peptide, which they dubbed BPI, that showed promise in treating B-cell lymphomas by specifically blocking the cancer-causing effects of the BCL6 protein. But until now, there has been no way to distinguish between diffuse large B cell lymphomas that are caused by BCL6 deregulation and those cases in which BCL6 is expressed but doesn’t actually drive the cancer.

Dr. Melnick reasoned that those diffuse large B cell lymphomas that are caused by BCL6 deregulation should have a characteristic “signature” in which the genes targeted by the BCL6 protein are either expressed (turned on) or not expressed. The researchers used state-of-the-art genomics technology to analyze a panel of diffuse large B cell lymphoma cell lines. They found a set of 485 BCL6-controlled genes and confirmed that all lymphomas with the BCL6 signature are killed by BPI while lymphomas without the signature are resistant to the therapy.

“Suitable lymphoma patients—those whose tumor cells exhibit this BCL6 signature --will now have access to a potent and specific therapy that is unlikely to cause the side effects associated with chemotherapy drugs,” says Dr. Melnick. “At the same time, lymphoma patients who don’t fit this genetic profile will be spared a drug treatment that would be ineffective for them.”

Other Einstein scientists involved in the study were Jose M. Polo, Leandro Cerchietti, Kenny Ye and John M. Greally. The researchers also included Przemyslaw Juszczynski and Margaret Shipp of the Dana-Farber Cancer Institute and Stefano Monti of the Broad Institute.

Karen Gardner | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>