Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CRP liver protein induces hypertension

21.02.2007
C-Reactive Protein, widely regarded as a risk factor for hypertension and other forms of cardiovascular disease, plays a direct role in the onset of hypertension, researchers at UT Southwestern Medical Center have found.

"We have discovered that C-Reactive Protein (CRP) is not merely a marker of the risk of hypertension, it actually induces hypertension," said Dr. Wanpen Vongpatanasin, associate professor of internal medicine and lead author of the study appearing in the February issue of Circulation.

UT Southwestern researchers studied mice with an engineered gene for CRP that was under the regulation of a second gene responsive to changes in dietary carbohydrate intake. The levels of circulating CRP, which is produced by the liver, were directly manipulated by altering the mice's diets, and the effect on blood pressure was determined. In this manner the actions of CRP were segregated from the actions of other mediators of inflammation.

"We found that when we switched on the gene that causes increases in CRP, the blood pressure went up, and when we turned off the gene and CRP levels went down, the blood pressure fell. Diet changes in the control mice had no effect, indicating that the blood pressure responses were due to CRP," said Dr. Vongpatanasin. "The cause of elevated blood pressure induced by CRP was also determined."

Clinical studies over the past decade have suggested that chronically elevated levels of CRP indicate inflammation that puts an individual at risk for hypertension and other cardiovascular ailments such as hardening of the arteries.

The mice in the latest study were supersensitive to angiotensin II, which is a major circulating factor regulating blood pressure via arterial constriction. This was due to alterations in key proteins in the vascular wall that are involved with angiotensin II.

Also, the researchers discovered that the initiating mechanism is a lack of the key signaling molecule nitric oxide in the artery wall, which has multiple beneficial roles in the cardiovascular system, as well as made a connection between nitric oxide and the proteins responsible for angiotensin II activity.

"Whether these same processes are operative in humans is yet to be determined," said Dr. Vongpatanasin. "We are also pursuing follow-up studies to further understand better how CRP causes the high blood pressure in the mice."

The ultimate goal of the research is to discover how CRP interacts with molecules in the artery wall, leading to a better understanding of hypertension and pointing to new ways to treat it, Dr. Vongpatanasin said.

"We have uncovered a series of mechanisms that link a circulating factor that rises with chronic inflammation, obesity and aging to the regulation of blood pressure," said Dr. Philip Shaul, professor of pediatrics at UT Southwestern and the study's senior author. "Doing so provides a new perspective on how these conditions have a negative impact on cardiovascular health."

Katherine Morales | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New cellular pathway helps explain how inflammation leads to artery disease

22.06.2018 | Life Sciences

When fluid flows almost as fast as light -- with quantum rotation

22.06.2018 | Physics and Astronomy

Exposure to fracking chemicals and wastewater spurs fat cell development

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>