Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Athletic Ski Jumping! A Lightweight Formula Solves Complex Problem

20.02.2007
Dangerous underweight among top athletes can now be detected even more accurately using the new Mass Index. Unlike the Body Mass Index used in the past, this innovative method also takes into account individual leg length.

The new index was developed as part of a project by the Austrian Science Fund FWF, which had already provided the basis for resolving the problem of underweight in ski jumping. The project was based on wide-ranging field studies during the Olympic Games.

Less is more, at least when it comes to body weight and jumping distance in ski jumping, as the lighter you are, the further you fly. But when is “less” actually “too little”? When does low weight distort competition and become chronic underweight and how can these harmful developments in sport be countered?

These were precisely the issues investigated by a team led by Prof. Wolfram Müller of the Center of Human Performance Research at the University of Graz as part of the project “Problems with underweight among competitive athletes”. One of the results is a much improved facility for assessing underweight and overweight. The new measure for determining relative body weight is called the Mass Index (MI) and in the future it will augment or even replace the Body Mass Index (BMI), which does not take into account the proportions of the body and, in particular, individual leg length.

DO LONG LEGS MAKE YOU THIN?

With his new method, Prof. Müller offers more precise calculation of relative body weight, as he explains: "So far - based on the BMI calculation - people with long legs are assessed as too thin and, conversely, people with extremely short legs are quickly branded as overweight. However, both of these assessments are incorrect as the calculation method is based simply on a person’s size. In contrast, the Mass Index calculated by us takes into account the ratio between the legs and the upper part of the body.”

The results obtained in this project have already led to a reduction in problems with underweight for ski jumpers. Studies of athletes’ physical build in connection with aerodynamic measurements and calculations persuaded the International Skiing Association to change the ski jumping regulations from the 2004/05 season onwards. Extremely light athletes are now obliged to jump with shorter skis. Since this new competition rule was implemented, practically no more underweight jumpers have got themselves into this condition through starvation. This means it is the athletes’ skill that will count in future and not the advantages of being underweight.

OLYMPIC FIELD STUDY

The varied project results were only made possible by comprehensive studies supported by the Olympic Committee and the International Skiing Association. Prof. Karl Sudi, who developed the project with Prof. Müller, says: “We had a great opportunity during the 2002 Olympics in Salt Lake City to conduct a field study on athletes’ individual flight styles and at the same time to examine the proportions and composition of ski jumpers’ bodies. The involvement of nearly all the ski jumpers who started at the games meant it was possible to create the basis for changing the rules in ski jumping.”

It is particularly pleasing that athletes too ultimately benefited from this FWF project. Following measurements in wind tunnels, completely new forms of training were developed which make a key contribution to optimizing the performance of ski jumpers and athletes in the Nordic combined discipline. Eight athletes who took part in these forms of training won gold at the Olympic Games in Turin.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv200702-en.html

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>