Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Athletic Ski Jumping! A Lightweight Formula Solves Complex Problem

20.02.2007
Dangerous underweight among top athletes can now be detected even more accurately using the new Mass Index. Unlike the Body Mass Index used in the past, this innovative method also takes into account individual leg length.

The new index was developed as part of a project by the Austrian Science Fund FWF, which had already provided the basis for resolving the problem of underweight in ski jumping. The project was based on wide-ranging field studies during the Olympic Games.

Less is more, at least when it comes to body weight and jumping distance in ski jumping, as the lighter you are, the further you fly. But when is “less” actually “too little”? When does low weight distort competition and become chronic underweight and how can these harmful developments in sport be countered?

These were precisely the issues investigated by a team led by Prof. Wolfram Müller of the Center of Human Performance Research at the University of Graz as part of the project “Problems with underweight among competitive athletes”. One of the results is a much improved facility for assessing underweight and overweight. The new measure for determining relative body weight is called the Mass Index (MI) and in the future it will augment or even replace the Body Mass Index (BMI), which does not take into account the proportions of the body and, in particular, individual leg length.

DO LONG LEGS MAKE YOU THIN?

With his new method, Prof. Müller offers more precise calculation of relative body weight, as he explains: "So far - based on the BMI calculation - people with long legs are assessed as too thin and, conversely, people with extremely short legs are quickly branded as overweight. However, both of these assessments are incorrect as the calculation method is based simply on a person’s size. In contrast, the Mass Index calculated by us takes into account the ratio between the legs and the upper part of the body.”

The results obtained in this project have already led to a reduction in problems with underweight for ski jumpers. Studies of athletes’ physical build in connection with aerodynamic measurements and calculations persuaded the International Skiing Association to change the ski jumping regulations from the 2004/05 season onwards. Extremely light athletes are now obliged to jump with shorter skis. Since this new competition rule was implemented, practically no more underweight jumpers have got themselves into this condition through starvation. This means it is the athletes’ skill that will count in future and not the advantages of being underweight.

OLYMPIC FIELD STUDY

The varied project results were only made possible by comprehensive studies supported by the Olympic Committee and the International Skiing Association. Prof. Karl Sudi, who developed the project with Prof. Müller, says: “We had a great opportunity during the 2002 Olympics in Salt Lake City to conduct a field study on athletes’ individual flight styles and at the same time to examine the proportions and composition of ski jumpers’ bodies. The involvement of nearly all the ski jumpers who started at the games meant it was possible to create the basis for changing the rules in ski jumping.”

It is particularly pleasing that athletes too ultimately benefited from this FWF project. Following measurements in wind tunnels, completely new forms of training were developed which make a key contribution to optimizing the performance of ski jumpers and athletes in the Nordic combined discipline. Eight athletes who took part in these forms of training won gold at the Olympic Games in Turin.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv200702-en.html

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>