Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modus operandi: how satellites track a mass killer

20.02.2002


Baby suffering from malaria
Photo: WHO/Pierre Virot 2001


A global mass killer could be tamed with the aid of satellite technology. Scientists are using data from Meteosat to help model and predict outbreaks of malaria. "Satellite sensor data hold out hope for the development of early-warning systems for diseases such as malaria, which kills between 1 and 2 million people each year," says David Rogers, of Oxford University’s Department of Zoology.

Rogers is part of a team based in Oxford, Nairobi and at NASA’s Goddard Space Flight Center, Maryland, who are using Meteosat and other satellite climate data to create mathematical models of the prevalence and spread of malaria, and the dynamics of outbreaks of the disease.
"Malaria takes its greatest toll in sub Saharan Africa," explains Rogers, "but the failure of affordable drugs, population growth and poverty are all contributing to a steady increase in the scale of the problem." It is against this background that interest in using satellite surveillance to map and predict malaria outbreaks is growing.


Malaria is a parasitic disease, spread by mosquitoes from infected to healthy people. With today’s satellite technology, scientists now have the ability to map climate conditions with the kind of detail and timeliness required to model the behaviour of the parasite’s mosquito vectors.

"Mosquito populations can grow and collapse in a few days," explains Rogers, "and some species live in very small pools of water - even in up-turned coconut shells - so we really need all the temporal and spatial resolution we can get. One of my colleagues once suggested we needed a ’Puddle-sat’ to identify mosquito breeding areas."

Several climate factors affect the mosquito population. David Rogers explains: "Temperature, humidity and rainfall are all important to mosquitoes at different stages of their life cycle but the relative importance of each varies in different places. In cold places, temperature limits the population and water generally doesn’t. In warmer places temperature is usually not limiting but water may be. In the hottest of places, all three factors tend to be limiting."
The team has been searching for the best correlation between climate factors and the incidence of malaria. The situation is complicated by the fact that the relationship between the number of mosquitoes and the number of cases of malaria is not a simple one; the inherent resistance or immunity of the local people to the disease varies in cycles and the reporting and recording of actual cases of infection on the ground is patchy at best.

To help deal with this problem, the team have found that a measure of plant growth is in fact very well matched to reported cases of malaria in many locations in East Africa, so perhaps that index can be used to ’fill in the gaps’ in the patchy medical data.

The team believe they have now begun to see some clear patterns emerging in the correlation of Meteosat cloud and rainfall data and malaria outbreaks, as a paper in the journal Nature, published last week explains. But, adds David Rogers "no prediction is ever 100% correct, so we see our work as progressively approximating the real situation on the ground in a continuing loop - make a prediction, check it on the ground, find and investigate wrong predictions and make a better model."

With climate change threatening to change the prevalence of diseases like malaria, it is more important than ever to develop good techniques for predicting their behaviour. "It is clear that the technologies we now have to study these diseases are far better than those available to malariologists in the early years of the last century. The challenge is to make the science of malaria prediction at least as good," concludes David Rogers. "All epidemiologists are looking forward to the greater information content of Meteosat SecondGeneration (MSG) data".

The first MSG, developed by ESA in cooperation with EUMETSAT, will be launched by EUMETSAT this summer.

Evangelina Oriol-Pibernat | ESA

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>