Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modus operandi: how satellites track a mass killer

20.02.2002


Baby suffering from malaria
Photo: WHO/Pierre Virot 2001


A global mass killer could be tamed with the aid of satellite technology. Scientists are using data from Meteosat to help model and predict outbreaks of malaria. "Satellite sensor data hold out hope for the development of early-warning systems for diseases such as malaria, which kills between 1 and 2 million people each year," says David Rogers, of Oxford University’s Department of Zoology.

Rogers is part of a team based in Oxford, Nairobi and at NASA’s Goddard Space Flight Center, Maryland, who are using Meteosat and other satellite climate data to create mathematical models of the prevalence and spread of malaria, and the dynamics of outbreaks of the disease.
"Malaria takes its greatest toll in sub Saharan Africa," explains Rogers, "but the failure of affordable drugs, population growth and poverty are all contributing to a steady increase in the scale of the problem." It is against this background that interest in using satellite surveillance to map and predict malaria outbreaks is growing.


Malaria is a parasitic disease, spread by mosquitoes from infected to healthy people. With today’s satellite technology, scientists now have the ability to map climate conditions with the kind of detail and timeliness required to model the behaviour of the parasite’s mosquito vectors.

"Mosquito populations can grow and collapse in a few days," explains Rogers, "and some species live in very small pools of water - even in up-turned coconut shells - so we really need all the temporal and spatial resolution we can get. One of my colleagues once suggested we needed a ’Puddle-sat’ to identify mosquito breeding areas."

Several climate factors affect the mosquito population. David Rogers explains: "Temperature, humidity and rainfall are all important to mosquitoes at different stages of their life cycle but the relative importance of each varies in different places. In cold places, temperature limits the population and water generally doesn’t. In warmer places temperature is usually not limiting but water may be. In the hottest of places, all three factors tend to be limiting."
The team has been searching for the best correlation between climate factors and the incidence of malaria. The situation is complicated by the fact that the relationship between the number of mosquitoes and the number of cases of malaria is not a simple one; the inherent resistance or immunity of the local people to the disease varies in cycles and the reporting and recording of actual cases of infection on the ground is patchy at best.

To help deal with this problem, the team have found that a measure of plant growth is in fact very well matched to reported cases of malaria in many locations in East Africa, so perhaps that index can be used to ’fill in the gaps’ in the patchy medical data.

The team believe they have now begun to see some clear patterns emerging in the correlation of Meteosat cloud and rainfall data and malaria outbreaks, as a paper in the journal Nature, published last week explains. But, adds David Rogers "no prediction is ever 100% correct, so we see our work as progressively approximating the real situation on the ground in a continuing loop - make a prediction, check it on the ground, find and investigate wrong predictions and make a better model."

With climate change threatening to change the prevalence of diseases like malaria, it is more important than ever to develop good techniques for predicting their behaviour. "It is clear that the technologies we now have to study these diseases are far better than those available to malariologists in the early years of the last century. The challenge is to make the science of malaria prediction at least as good," concludes David Rogers. "All epidemiologists are looking forward to the greater information content of Meteosat SecondGeneration (MSG) data".

The first MSG, developed by ESA in cooperation with EUMETSAT, will be launched by EUMETSAT this summer.

Evangelina Oriol-Pibernat | ESA

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>