Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success of electrical treatment for tumor removal

14.02.2007
A potential breakthrough in minimally invasive surgical removal of tumors has been demonstrated using an innovative technique involving microsecond electrical pulses that can punch permanent nanoscale holes in the membranes of targeted cells without harming adjacent healthy tissue.

The technique, known as irreversible electroporation (IRE), was developed by a research team headed by Boris Rubinsky, currently on leave as professor of bioengineering and mechanical engineering at the University of California, Berkeley, and now head of the Center for Biomedical Engineering in the Service of Humanity and Society at the Hebrew University of Jerusalem. The success of a large-scale study on pigs who were treated using the technique is described in the February issue of the journal Technology in Cancer Research and Treatment.

"I've been working in this area of minimally invasive surgery for 30 years now," said Rubinsky, lead author of the paper in the journal. "I truly think that this will be viewed as one of the most important advances in the treatment of tumors in years. I am very excited about the potential of this technique. It may have tremendous applications in many areas of medicine and surgery."

Rubinsky co-authored the paper with Dr. Gary Onik, director of surgical imaging at Florida Hospital Celebration Health. They founded the Oncobionic Company two years ago to commercialize IRE. Oncobionic is in the process of being sold to AngioDynamics, a New York-based manufacturer of medical devices for minimally invasive surgery.

It was first reported in the early 1970s that the application to cells of very fast electrical pulses – in the microsecond and millisecond range – creates an electrical field that causes nanoscale pores to open in the cell membrane (electroporation). But research since then has mainly focused on reversible electroporation, which uses voltages low enough to temporarily increase the cell membrane's permeability. The holes in the cell membrane created by reversible electroporation close up shortly after treatment, allowing the cell to survive.

“This concept of reversible electroporation really caught on in modern biotechnology, especially over the last decade," said Rubinsky. "It is used primarily to help get genes and drugs into cells (but is not effective in killing “target” cells directly). The field of irreversible electroporation was pretty much forgotten."

Irreversible electroporation uses electrical pulses that are slightly longer and stronger than reversible electroporation. With IRE, the holes in the cell membrane do not reseal, causing the cell to die. IRE utilizes a range of electrical current that causes permanent damage to cell membranes without generating heat and thermal damage.

The advantage to this, say the researchers, is that IRE overcomes the limitations of current minimally invasive surgical techniques that use extreme heat, such as hyperthermia or radiofrequency, or extreme cold, such as cryosurgery, to destroy tumorous cells. They point out that this type of temperature damage to cells also causes structural damage to proteins and the surrounding connective tissue. For liver cancer, for example, the bile duct is at risk for damage. For prostate cancer, the urethra and surrounding nerve tissue is often affected.

Irreversible electroporation, on the other hand, acts just on the targeted cell membrane, leaving collagen fibers and other vascular tissue structures intact. The researchers said that leaving the tissue's "scaffolding" in place in this manner allows healthy cells to regrow far more quickly than if everything in the region were destroyed.

In the new study, the researchers set out to demonstrate that the IRE technique could produce reliable and predictable results in a large animal model. They performed the IRE surgical technique on 14 healthy female pigs under general anesthesia, using the same procedures as if the patients were human.

They showed that selected cell membranes were destroyed, while untargeted adjacent tissue healed remarkably quickly. Although the tissue chosen for destruction in this study was healthy, the researchers found in a prior cell culture study that IRE effectively kills human liver cancer tissue.

A further chronic drawback of heat or cryo (cold) treatments for cancer is the difficulty in treating cells that are immediately adjacent to the blood vessels. Because blood maintains a relatively stable temperature, it actually transfers heat or cold away from a treatment area in an attempt to return the region to a normal temperature range. That means some cancerous cells might actually survive treatment.

"That counts for a lot of failures when treating liver cancers," said Onik. "With IRE, you can destroy cancerous cells right next to the blood vessels. It's a more complete treatment. In my clinical experience, this is about as good as it gets. We've been using other techniques for a long time. This provides significant improvements over other treatments."

"While we are obviously very excited about this advance in tumor removal, we are still in the early stages of our learning curve," Onik cautioned. "There is always the potential for unexpected results."

The IRE technology was cleared for human use by the U.S. Food and Drug Administration in November 2006. Onik is scheduled to begin human clinical trials for IRE this summer.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>