Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success of electrical treatment for tumor removal

14.02.2007
A potential breakthrough in minimally invasive surgical removal of tumors has been demonstrated using an innovative technique involving microsecond electrical pulses that can punch permanent nanoscale holes in the membranes of targeted cells without harming adjacent healthy tissue.

The technique, known as irreversible electroporation (IRE), was developed by a research team headed by Boris Rubinsky, currently on leave as professor of bioengineering and mechanical engineering at the University of California, Berkeley, and now head of the Center for Biomedical Engineering in the Service of Humanity and Society at the Hebrew University of Jerusalem. The success of a large-scale study on pigs who were treated using the technique is described in the February issue of the journal Technology in Cancer Research and Treatment.

"I've been working in this area of minimally invasive surgery for 30 years now," said Rubinsky, lead author of the paper in the journal. "I truly think that this will be viewed as one of the most important advances in the treatment of tumors in years. I am very excited about the potential of this technique. It may have tremendous applications in many areas of medicine and surgery."

Rubinsky co-authored the paper with Dr. Gary Onik, director of surgical imaging at Florida Hospital Celebration Health. They founded the Oncobionic Company two years ago to commercialize IRE. Oncobionic is in the process of being sold to AngioDynamics, a New York-based manufacturer of medical devices for minimally invasive surgery.

It was first reported in the early 1970s that the application to cells of very fast electrical pulses – in the microsecond and millisecond range – creates an electrical field that causes nanoscale pores to open in the cell membrane (electroporation). But research since then has mainly focused on reversible electroporation, which uses voltages low enough to temporarily increase the cell membrane's permeability. The holes in the cell membrane created by reversible electroporation close up shortly after treatment, allowing the cell to survive.

“This concept of reversible electroporation really caught on in modern biotechnology, especially over the last decade," said Rubinsky. "It is used primarily to help get genes and drugs into cells (but is not effective in killing “target” cells directly). The field of irreversible electroporation was pretty much forgotten."

Irreversible electroporation uses electrical pulses that are slightly longer and stronger than reversible electroporation. With IRE, the holes in the cell membrane do not reseal, causing the cell to die. IRE utilizes a range of electrical current that causes permanent damage to cell membranes without generating heat and thermal damage.

The advantage to this, say the researchers, is that IRE overcomes the limitations of current minimally invasive surgical techniques that use extreme heat, such as hyperthermia or radiofrequency, or extreme cold, such as cryosurgery, to destroy tumorous cells. They point out that this type of temperature damage to cells also causes structural damage to proteins and the surrounding connective tissue. For liver cancer, for example, the bile duct is at risk for damage. For prostate cancer, the urethra and surrounding nerve tissue is often affected.

Irreversible electroporation, on the other hand, acts just on the targeted cell membrane, leaving collagen fibers and other vascular tissue structures intact. The researchers said that leaving the tissue's "scaffolding" in place in this manner allows healthy cells to regrow far more quickly than if everything in the region were destroyed.

In the new study, the researchers set out to demonstrate that the IRE technique could produce reliable and predictable results in a large animal model. They performed the IRE surgical technique on 14 healthy female pigs under general anesthesia, using the same procedures as if the patients were human.

They showed that selected cell membranes were destroyed, while untargeted adjacent tissue healed remarkably quickly. Although the tissue chosen for destruction in this study was healthy, the researchers found in a prior cell culture study that IRE effectively kills human liver cancer tissue.

A further chronic drawback of heat or cryo (cold) treatments for cancer is the difficulty in treating cells that are immediately adjacent to the blood vessels. Because blood maintains a relatively stable temperature, it actually transfers heat or cold away from a treatment area in an attempt to return the region to a normal temperature range. That means some cancerous cells might actually survive treatment.

"That counts for a lot of failures when treating liver cancers," said Onik. "With IRE, you can destroy cancerous cells right next to the blood vessels. It's a more complete treatment. In my clinical experience, this is about as good as it gets. We've been using other techniques for a long time. This provides significant improvements over other treatments."

"While we are obviously very excited about this advance in tumor removal, we are still in the early stages of our learning curve," Onik cautioned. "There is always the potential for unexpected results."

The IRE technology was cleared for human use by the U.S. Food and Drug Administration in November 2006. Onik is scheduled to begin human clinical trials for IRE this summer.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>