Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abertay unveils smart technology that could help to cut physiotherapy waiting times

09.02.2007
Technology with the potential to help cut physiotherapy waiting times has been unveiled by the University of Abertay Dundee.

Researchers in Abertay’s School of Computing and Creative Technologies have developed an intelligent exoskeleton that can be programmed to remember and repeat specific limb movements.

The NeXOS system will enable physiotherapists to devise exercise programmes customized to the individual needs of any patient with lower limb problems. As well as victims of leg or spinal cord injuries, this could include stroke patients.

Such patients need regular exercise of the affected limb, to keep muscles in trim and prevent the loss of bone mineral density. There are currently 28,000 people on waiting lists for physiotherapy in Scotland.

NeXOS can exercise patients’ legs exactly as the physiotherapist wishes, but without the need for the physiotherapist to be present in person. Many more patients could be treated per therapist, leading to potentially big cuts in waiting times.

As well as providing exercise tailored precisely to each patient’s requirements, NeXOS can also monitor how well each patient is responding and send data back to the physiotherapist, using the internet if necessary.

This opens up the possibility of NeXOS being used away from conventional clinics, perhaps being installed in local gyms and sports centres or even patients’ own homes. Patients would be able to exercise almost anytime, anywhere, and physiotherapists would be able to monitor progress and adjust settings accordingly by remote control.

Abertay researchers led by Professor David Bradley developed NeXOS in conjunction with the Universities of Sheffield and Sheffield Hallam, and Barnsley Hospital NHS Foundation Trust. The project was supported by the Department of Health through its NEAT (New and Emerging Applications of Technology) programme.

NeXOS uses pneumatics technology because of its ability to be programmed to variable degrees of power and resistance. Power is needed to move immobile limbs, but gradually increasing resistance is needed to encourage muscles to regain their strength.

The device was originally intended to be an intelligent exo-skeleton that could improve the mobility of people with permanent lower limb disabilities, but Professor Bradley and his colleagues quickly realized that the basic concept could be modified into a rehabilitation tool for temporary lower limb problems as well.

Researchers videotaped dozens of physiotherapy sessions, recording exactly how the feet and legs of patients were being manipulated, and converting the movements into a range of mathematical models describing the movements in three dimensions.

These formulae were then used to programme the exoskeleton with the variety of motions it needs to work. The result is that a physiotherapist can adjust the range, speed and direction of each movement, ensuring that the patient is getting treatment appropriate to his or her condition.

As well as academics at the three universities involved, practising physiotherapists, clinicians, engineers, mathematicians, health administrators and patients were all involved in brainstorming and analysing the concept. Further research is planned on ways in which therapists could use the technology more effectively, and the Abertay-led team is now looking to stage further trials in conjunction with a potential manufacturer

Kevin Coe | alfa
Further information:
http://www.abertay.ac.uk

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>