Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental toxicants like lead, mercury target stem cells

07.02.2007
Low levels of toxic substances cause critical stem cells in the central nervous system to prematurely shut down. That is the conclusion of a study published today in the on-line journal PLoS Biology. This research, which is the first to identify a common molecular trigger for the effects of toxicant exposure, may give scientists new insights into damage caused by toxicant exposure and new methods of evaluating the safety of chemicals.

While scientists have long understood that certain chemicals like lead and mercury have adverse effects on the body, the precise molecular mechanism by which many of these substances cause harm remain uncertain. This makes it more difficult to concretely link individual toxic substances with specific diseases or determine – with greater confidence – whether or not a chemical is toxic. However, recent advances in molecular biology, genetics, and stem cell biology have provided scientists a new window onto the impact of toxic substances on the cellular and molecular level.

"Establishing the general principles underlying the effects of toxicant exposure on the body is one of the central challenges of toxicology research," said University of Rochester biomedical geneticist Mark Noble, Ph.D., senior author of the study. "We have discovered a previously unrecognized regulatory pathway on which chemically diverse toxicants converge and disrupt normal cell function."

Noble and his colleagues exposed a specific population of brain cells to low levels of lead, mercury, and paraquat, one of the most widely used herbicides in the world. These cells, called glial progenitors, are advanced-stage stem cells that are critical to the growth, development, and normal function of the central nervous system. The activity of cells is regulated by molecular pathways – or controlled chemical reactions – normally set off when substances bind to receptors on the cell's surface. Noble and his colleagues found that these compounds turned off specific sets of receptors and set into motion a molecular chain reaction that causes the cells to shut down and stop dividing.

"These toxicants are activating a normal cellular regulatory pathway, they are just activating it inappropriately," said Noble. "If this disruption occurs during critical developmental periods, like fetal growth or early childhood, it can have a significant impact. Development is a cumulative process, and the effects of even small changes in progenitor cell division and differentiation over multiple generations could have a substantial effect on an organism."

This study is an example of the ability of stem cell research to shed new light on many diseases and health problems that have heretofore been poorly understood by the medical community. Noble and his colleagues are pioneers in the field and have been involved in the discovery of several of the progenitor cells that are involved in building the central nervous system. The growing knowledge of the precise timing and role of these cells has enabled scientists to explore the molecular origin of these diseases, and the Rochester team's findings are part of a growing number of discoveries that indicate that certain developmental syndromes may be the result of disruption in stem cell function.

There are tens of thousands of synthetic industrial chemicals, pesticides, metals, and other substances for which toxicological information is limited or nonexistent. By identifying a molecular target that is shared by toxic substances, all with very different chemical compositions, this discovery may give scientists a method to rapidly evaluate compounds to determine whether or not they pose a potential health threat.

"One of the obstacles in the analysis of new chemicals is the difficulty in developing a system that is sensitive enough and can make predictions that are true for both individual cells and the entire organism," said Noble. "This novel pathway gives as a way to analyze a diverse array of chemicals at levels in which they would be encountered in the environment. Furthermore, by identifying a specific molecular pathway that is activated by toxic exposure, we can now begin to look at specific ways to protect cells from this disruption of signaling."

Mark Michaud | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>