Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in amino acids in the 1918 influenza virus cut transmission

06.02.2007
Modest changes in the 1918 flu virus's hemagglutinin receptor binding site—a molecular structure critical for the spread of infection—stopped viral transmission in ferrets, according to a new study conducted by researchers at Mount Sinai School of Medicine and at the Centers for Disease Control and Prevention.

The finding, published in the February 1 issue of Science, could have significant clinical implications in helping scientists develop ways to break the disease cycle and possibly help reduce the risk for a potential pandemic.

While flu pandemics occur every 10 to 40 years, the factors that lead to the emergence of pandemic viruses are not well understood, explains study co-author Adolfo García-Sastre, PhD, Professor of Microbiology at Mount Sinai School of Medicine. "What's most threatening is the possibility of another pandemic, similar to that of 1918, which was caused by a novel influenza subtype virus capable of causing severe respiratory disease and death," says Dr. García-Sastre. "So if we can understand the molecular mechanisms behind its transmission, perhaps we can do something to block transmission and prevent illness."

To do this, Dr. García-Sastre and his team studied two key molecular structures: hemagglutinin, a protein located in of the surface of the influenza virus, and sialic acid, a cellular molecule that is recognized by hemaglutinins of both human and avian strains of influenza virus. These molecules are key to initiation of infection. There are 16 different subtypes of hemagglutinin called H1 through H16, present in influenza virus strains circulating in birds. H1 and H3 are found today in human influenza viruses.

Hemaglutinin helps open the door to the cell to allow the virus to infect. The first step is in this process is the binding of the hemagglutinin to sialic acid containing molecules in the cell surface. There are two primary ways sialic acids are associated with molecules in the cell surface—one is through an alpha-2,6 bond and another is through an alpha-2,3 bond. Hemagglutinins from avian influenza virus prefer binding to alpha 2-3 sialic acids, while hemagglutinins from human influenza viruses prefer binding to alpha 2-6 sialic acids, which are highly abundant in the upper respiratory tract of humans. For an avian virus to be able to jump to humans and to start a new pandemic, it has been hypothesized that the hemagglutinin needs to mutate and change its binding preference from alpha2-3 to alpha2-6 sialic acids.

In this study, the researchers used ferrets as an animal model of human influenza virus infection, due to the presence of alpha2-6 sialic acids in the respiratory tract of ferrets, similar to the human scenario. Groups of ferrets were infected with three types of influenza viruses; two from existing viral strains related to the 1918 flu and taken from human tissue, and the third, which was artificially created in a laboratory and made to look like avian flu. One virus bound to only alpha-2,6, the second bound to both, and the artificially-generated virus bound to only alpha-2,3.

The researchers were surprised to discover that the ferrets infected with all three viruses, including the one with preference for binding to alpha2-3 sialic acids, experienced severe disease, with high levels of virus replication in the respiratory tract. However, only the virus with specificity for binding to alpha2-6 silaic acids was able to transmit by aerosols to contact ferrets. "It appears that when the virus only had an alpha-2,3 binding activity, replication and virulence didn't change," explains Dr. García-Sastre. "These animals still had symptoms, however transmission was practically abolished." Since the artificially-generated virus featured alpha-2,3 sialic acid binding activity, this finding indicated that alpha-2,6 sialic acid binding activity was more important for optimal viral transmission. "Our findings indicate that, to become more transmissible in humans, the currently circulating avian influenza H5N1 virus requires a receptor binding change in the hemagglutinin to a predominant alpha-2,6 sialic acid binding preference," Dr. García-Sastre adds. "Although this is likely not to be the only change required by H5N1 viruses to become transmissible in humans, this could help us make more accurate predictions on the ability of an influenza virus to transmit among humans and unravels the existence of molecular determinants of transmission that could be used as targets for the development of novel drugs that will stop influenza virus transmission, and therefore, help to stop epidemics and pandemics of influenza."

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.org

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>