Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helium helps patients breathe easier

06.02.2007
It makes for bobbing balloons and squeaky voices, but now helium is also helping people with severe respiratory problems breathe easier.

Researchers at the University of Alberta in Edmonton, Canada have discovered that by combining helium with 40 per cent oxygen allowed patients with chronic obstructive pulmonary disease (COPD) to increase their exercise capacity by an average of 245 per cent. COPD is a disease of the lungs caused by smoking and includes the conditions of emphysema and chronic bronchitis.

This was the first study to demonstrate that helium-hyperoxia (40 per cent oxygen, 60 per cent helium) improves the exercise tolerance of COPD patients to a greater extent than oxygen alone, which is currently used for treating patients with this disorder. People with severe COPD typically struggle for every breath while exercising and any improvements that could be made to their ability to perform exercise could have significant clinical implications.

The results of the study were published recently in the American Journal of Respiratory Critical Care Medicine.

Patients with COPD have difficulty breathing out and often air is trapped in the lungs at the end of each breath; this has been shown to be one of the primary reasons for the shortness of breath experienced by these patients. Combining the helium and hyperoxia slows down the frequency of breathing while making the air easier to breathe. This combined effect reduces the amount of air trapped in the lungs during exercise.

"This means they don't have to work as hard to breathe and they are not so short of breath during exercise, which allows them to do more," said Dr. Neil Eves, lead author on the study. Eves conducted the study for his PhD dissertation at the University of Alberta.

In the study 10 clinically stable men with moderate to severe COPD were each given four different mixes of gases including room air, while they exercised. During each test they were monitored for exercise time, breathing capacity, work of breathing and symptoms of exertion. The best results were achieved with a mix of 40 per cent oxygen and 60 per cent helium.

The helium-hyperoxia mixture improved the exercise tolerance of the patients by 245 per cent compared with air (21 per cent oxygen, 79 per cent nitrogen), by 56 per cent compared with hyperoxia (40 per cent oxygen, 60 per cent nitrogen) and 116 per cent compared with a "normal" oxygen-helium gas (21 per cent oxygen, 79 per cent helium).

"If patients were to breathe helium-hyperoxia in a rehabilitation setting, they could potentially perform a lot more exercise, which may improve their exercise capacity, fitness level and as a result, quality of life," Eves said.

Bev Betkowski | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>