Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light at night is dangerous to health

29.01.2007
Night life under electric lighting may cause serious behavioral disorders and physical diseases including cancer, according to a specialist team led of the Professor N.N. Pertov Scientific Research Institute of Oncology, Russian Ministry of Healthcare, and Petrozavodsk State University, who have been investigating the effects of night-time illumination on people’s health for several years.

The researchers summarized findings of their own investigations and extensive foreign experience, medical statistics and data of experiments carried out on rodents. Permanent bright light suppresses synthesis of melatonin, the hormone that impacts the endocrine system work and prevents cancerous growth formation and development.

Light pollution has become almost an integral part of contemporary life. Bright electric light pours on the people who have to work on night shifts, pilots and stewardesses, who often travel from one time zone to another, and inhabitants of the North (where white nights take place in summer). Normal functioning in humans requires regular changing of day and night, light and darkness. In the dark, the epiphysis (the pineal gland) synthesizes the melatonin hormone, but the influence of light at night hours suppresses this synthesis. Melatonin is also a well-known biological blocker of malignant neoplasms.

The more intense the night-time light, the stronger it suppresses the melatonin synthesis. Some people are more sensitive to night-time illumination’s action than others, for example, women are generally more sensitive than men. Light pollution can cause premature reproductive system ageing, and increase the risk of breast cancer and large intestine cancer in women. Night workers and pilots more often suffer from large intestine or rectal cancers. In addition, irregular light can causes sleep disturbance, gastrointestinal and cardiovascular diseases, metabolic derangements and, possibly increase the likelihood of developing diabetes.

This is confirmed by results of experiments with rodents, which react to permanent light in the same way as humans do. Cancerous growth occurs more often with mice and rats under permanent light conditions, being more susceptible to chemical carcinogens and malignant cell inoculation. Mice suffering from cancer die more often in light pollution conditions than in controls with undisturbed day and night. A similar phenomenon is also recorded by clinicians: according to some observations, patients with large intestine cancer who retain the 24-hour rhythm of activity live longer than the patients with disrupted rhythms.

Cancerous growth behavior is closely connected with the melatonin concentration in the serum. It usually changes depending on the time of the day, but with oncological patients and laboratory animals, the diurnal rhythm of melatonin in serum is significantly disrupted, and its concentration is below normal.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>