Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light at night is dangerous to health

29.01.2007
Night life under electric lighting may cause serious behavioral disorders and physical diseases including cancer, according to a specialist team led of the Professor N.N. Pertov Scientific Research Institute of Oncology, Russian Ministry of Healthcare, and Petrozavodsk State University, who have been investigating the effects of night-time illumination on people’s health for several years.

The researchers summarized findings of their own investigations and extensive foreign experience, medical statistics and data of experiments carried out on rodents. Permanent bright light suppresses synthesis of melatonin, the hormone that impacts the endocrine system work and prevents cancerous growth formation and development.

Light pollution has become almost an integral part of contemporary life. Bright electric light pours on the people who have to work on night shifts, pilots and stewardesses, who often travel from one time zone to another, and inhabitants of the North (where white nights take place in summer). Normal functioning in humans requires regular changing of day and night, light and darkness. In the dark, the epiphysis (the pineal gland) synthesizes the melatonin hormone, but the influence of light at night hours suppresses this synthesis. Melatonin is also a well-known biological blocker of malignant neoplasms.

The more intense the night-time light, the stronger it suppresses the melatonin synthesis. Some people are more sensitive to night-time illumination’s action than others, for example, women are generally more sensitive than men. Light pollution can cause premature reproductive system ageing, and increase the risk of breast cancer and large intestine cancer in women. Night workers and pilots more often suffer from large intestine or rectal cancers. In addition, irregular light can causes sleep disturbance, gastrointestinal and cardiovascular diseases, metabolic derangements and, possibly increase the likelihood of developing diabetes.

This is confirmed by results of experiments with rodents, which react to permanent light in the same way as humans do. Cancerous growth occurs more often with mice and rats under permanent light conditions, being more susceptible to chemical carcinogens and malignant cell inoculation. Mice suffering from cancer die more often in light pollution conditions than in controls with undisturbed day and night. A similar phenomenon is also recorded by clinicians: according to some observations, patients with large intestine cancer who retain the 24-hour rhythm of activity live longer than the patients with disrupted rhythms.

Cancerous growth behavior is closely connected with the melatonin concentration in the serum. It usually changes depending on the time of the day, but with oncological patients and laboratory animals, the diurnal rhythm of melatonin in serum is significantly disrupted, and its concentration is below normal.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>