Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwave oven can sterilize sponges, scrub pads

24.01.2007
PLEASE NOTE: To guard against the risk of fire, people who wish to sterilize their sponges at home must ensure the sponge is completely wet. Two minutes of microwaving is sufficient for most sterilization. Sponges should also have no metallic content. Last, people should be careful when removing the sponge from the microwave as it will be hot.

Microwave ovens may be good for more than just zapping the leftovers; they may also help protect your family.

University of Florida engineering researchers have found that microwaving kitchen sponges and plastic scrubbers — known to be common carriers of the bacteria and viruses that cause food-borne illnesses – sterilizes them rapidly and effectively.

That means that the estimated 90-plus percent of Americans with microwaves in their kitchens have a powerful weapon against E. coli, salmonella and other bugs at the root of increasing incidents of potentially deadly food poisoning and other illnesses.

“Basically what we find is that we could knock out most bacteria in two minutes,” said Gabriel Bitton, a UF professor of environmental engineering. “People often put their sponges and scrubbers in the dishwasher, but if they really want to decontaminate them and not just clean them, they should use the microwave.”

Bitton, an expert on wastewater microbiology, co-authored a paper about the research that appears in the December issue of the Journal of Environmental Health, the most recent issue. The other authors are Richard Melker, a UF professor of anesthesiology, and Dong Kyoo Park, a UF biomedical engineering doctoral student.

Food-borne illnesses afflict at least 6 million Americans annually, causing at least 9,000 deaths and $4 billion to $6 billion in medical costs and other expenses. Home kitchens are a common source of contamination, as pathogens from uncooked eggs, meat and vegetables find their way onto countertops, utensils and cleaning tools. Previous studies have shown that sponges and dishcloths are common carriers of the pathogens, in part because they often remain damp, which helps the bugs survive, according to the UF paper.

Bitton said the UF researchers soaked sponges and scrubbing pads in raw wastewater containing a witch’s brew of fecal bacteria, viruses, protozoan parasites and bacterial spores, including Bacillus cereus spores.

Like many other bacterial spores, Bacillus cereus spores are quite resistant to radiation, heat and toxic chemicals, and they are notoriously difficult to kill. The UF researchers used the spores as surrogates for cysts and oocysts of disease-causing parasitic protozoa such as Giardia, the infectious stage of the protozoa. The researchers used bacterial viruses as a substitute for disease-causing food-borne viruses, such as noroviruses and hepatitis A virus.

The researchers used an off-the-shelf microwave oven to zap the sponges and scrub pads for varying lengths of time, wringing them out and determining the microbial load of the water for each test. They compared their findings with water from control sponges and pads not placed in the microwave.

The results were unambiguous: Two minutes of microwaving on full power mode killed or inactivated more than 99 percent of all the living pathogens in the sponges and pads, although the Bacillus cereus spores required four minutes for total inactivation.

Bitton said the heat, rather than the microwave radiation, likely is what proves fatal to the pathogens. Because the microwave works by exciting water molecules, it is better to microwave wet rather than dry sponges or scrub pads, he said.

“The microwave is a very powerful and an inexpensive tool for sterilization,” Bitton said, adding that people should microwave their sponges according to how often they cook, with every other day being a good rule of thumb.

Spurred by the trend toward home health care, the researchers also examined the effects of microwaving contaminated syringes. Bitton said the goal in this research was to come up with a way to sterilize syringes and other equipment that, at home, often gets tossed in the household trash, winding up in standard rather than hazardous waste landfills.

The researchers also found that microwaves were effective in decontaminating syringes, but that it generally took far longer, up to 12 minutes for Bacillus cereus spores. The researchers also discovered they could shorten the time required for sterilization by placing the syringes in heat-trapping ceramic bowls.

Bitton said preliminary research also shows that microwaves might be effective against bioterrorism pathogens such as anthrax, used in the deadly, still-unsolved 2001 postal attacks.

Using a dose of Bacillus cereus dried on an envelope as a substitute for mail contaminated by anthrax spores, Bitton said he found he could kill 98 percent of the spores in 10 minutes by microwaving the paper – suggesting, he said, one possible course of action for people who fear mail might be contaminated. However, more research is needed to confirm that this approach works against actual anthrax spores, he said.

Gabriel Bitton | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>