Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New anti-malaria drug

15.02.2002


The malaria parasite multiplies in red blood cells, safe from our immune defences
© SPL


Monkey tests hint compound could paralyse malaria parasite in humans.

A new-found chemical can root out malaria parasites hiding in red blood cells and stop them reproducing. It may become a much-needed new weapon in the war against one of the world’s biggest killers.

The compound clears monkeys of infection with the human malaria parasite Plasmodium falciparum at doses far lower than existing antimalarial drugs. But testing in humans is a few years away at least, says Henri Vial at Montpellier University in France who discovered the 1.



Developing new antimalarials is essential: malaria kills more than one million people each year, and the parasites are becoming resistant to existing drugs.

Malaria parasites enter our blood when the mosquitoes that carry them bite us. The parasites multiply inside red blood cells, safe from the body’s immune system.

Vial’s team developed a range of compounds that interfere with the building of cell membranes. Rapidly reproducing parasites are constantly making new cell membranes.

They used infected human blood samples to screen all their chemicals for antimalarial activity. A compound with the working name G25 came out on top.

"We were very lucky," says Vial: G25 only enters red-blood cells that harbour reproducing malaria parasites. Why is a mystery, and "the focus of our research now", Vial says.

This selectivity is important for two reasons. First, because all animal cells make membranes, G25 would be highly toxic if it were less discerning. More importantly, scientists could exploit the chemical’s nose for malaria-infected cells to deliver other antimalarial compounds. "It is a natural targeting mechanism," Vial says.

"No other group of drugs works like this," says Peter Winstanley, who is developing new antimalarial drugs at the University of Liverpool in England. As a result, he hopes G25 could kill even drug-resistant malaria.

But because G25 acts on a fundamental biological system there could be harmful side-effects. Vial’s team saw nothing untoward in monkeys, but admits more work on the safety of the compound is needed.

Another big hurdle is getting the compound into pill form. Currently it has to be injected. "We do have problems with oral absorption," says Vial. Chemical tweaking of G25 should help.

Scientific obstacles aside, new malaria drugs face an uphill economic struggle, cautions Winstanley. To save the most lives, malaria drugs must be affordable for developing countries where the disease is endemic. Keeping development costs low enough to achieve this is hard.

The newest antimalarial drug on the market costs $57 for a course of treatment. For the developing world "it would need to cost a lot less than 50 cents", Winstanley says.

References

  1. Wengelnik, K. et al. A class of potent antimalarials and their specific accumulation on infected erythrocytes. Science, 295, 1311 - 1314, (2002).

TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020211/020211-11.html

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>