Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug Resistance in an Influenza Pandemic

23.01.2007
Stockpiling large amounts of oseltamivir (Tamiflu) and related antiviral drugs with the intent to treat a large fraction of the population is a key part of pandemic preparedness of many countries.

However, it is known that influenza viruses can develop resistance to these drugs. New research by Marc Lipsitch and colleagues (Harvard University) suggests that wide-spread use of antiviral drugs during a pandemic carries a substantial risk of resistance emerging and resistant influenza strains causing illness in a substantial number of people. This would counteract the benefits of antiviral drugs but is not likely to eliminate those benefits entirely.

These researchers set up a mathematical model to mimic the spread of influenza. They then fed a set of assumptions into the computer. These included information about the rate of transmission of influenza from one person to another; what proportion of people would receive antiviral drugs for prophylaxis or treatment; how likely the drugs would be to successfully treat or prevent infection; and in what proportion of people the virus might become resistant to drugs.

The modeling led to three main predictions. First, it predicted that widespread use of antiviral drugs such as oseltamivir would quickly lead to the spread of resistant viruses, even if resistant strains emerged only rarely. Second, even with resistant strains circulating, prophylaxis and treatment with oseltamivir would still delay the onset of the pandemic and reduce its total size. Third, non-drug interventions (such as social isolation and school closures) would further reduce the number of cases, but a higher proportion of cases would be caused by resistant strains if these control measures were used.

Andrew Hyde | alfa
Further information:
http://www.plosmedicine.org

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>