Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical researchers get green light on radioactive ‘tracers’

18.01.2007
The Wolfson Molecular Imaging Centre at The University of Manchester has been awarded a license to produce its own radioactive tracers, enabling it to proceed with unique research into cancer, neurological and psychiatric treatments.

The license, which was granted following months of strict safety testing and evaluation by the Medicines and Healthcare Products Regulatory Authority (MHRA), allows the Centre to manufacture PET (Positron Emission Tomography) tracers in its high-tech sterile facilities and administer them to human participants in clinical trials. The license is one of only a handful issued in the UK.

PET scanning produces high-resolution images of internal organs and biological processes at work by injecting trace amounts of a radioactive compound, or ‘radiotracer’, into the part of the body to be scanned. Radioactive emissions from this tracer are then recorded by detectors within the scanner, and the resulting data processed by sophisticated software to create the images.

The trace levels of radioactivity are closely monitored for the safety of the patient, and diminish after a short time.

The license means the Centre can now develop, manufacture and use more complex radiotracers, such as those derived from the element Carbon-11 (11C). These will allow researchers to measure a wide range of complex molecular events such as cancer tumour growth, cell death, psychoses and chronic pain, as well as the effect of drugs designed to treat these conditions.

Such PET studies using advance tracers look set to inspire breakthroughs in research and improve the treatment of patients. The first to be enabled will investigate a possible link between inflammation in the central nervous system (CNS) and increased risk of stroke.

Lead researcher Dr Pippa Tyrrell of the University’s School of Medicine said: “This license means we can now measure CNS inflammation in subjects we know have an increased risk of stroke*, using one of the new tracers to detect activated immune cells in their brains. Around 125,000 people are affected by stroke each year in the UK and this approach could uncover vital new evidence on the role of inflammation; helping us to understand the risk factors and potentially modulate them.”

Ian Young, Quality Manager for the Centre, said “The MHRA’s requirements are very exacting and creating the extensive quality management system which has allowed us to progress to this level has involved a huge effort from all staff.”

Its Director Professor Karl Herholz said: “The award of this license is a key strategic milestone for the Centre, as we can now progress with the molecular imaging projects it is uniquely equipped to carry out. This approach to better-understanding the mechanisms of both the brain and cancer tumours is relatively under-explored, and we are very excited about its potential to inspire breakthroughs and improve patient treatments.”

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/aboutus/news/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>