Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology shows promise as next wrinkle fighter

17.01.2007
The next big idea in preventing wrinkles is very, very small.

Nano small.

A Michigan State University chemical engineer has discovered that nanoparticles can stop thin polymer films from buckling and wrinkling. It's a new solution to a critical problem as thin films become more important in new technology such as electronic monitors.

The cosmetic arsenal to fight human wrinkles embraces technologies that seems crossed with science fiction – from microdermabrasians to lasers to Botox injections – and nanoparticles are poised to join the war by warding off dreaded buckles in human skin.

Ilsoon Lee, an assistant professor of chemical engineering, along with Ph.D. student Troy Hendricks, published an online article in the American Chemical Society's Nano Letters in December 2006 that outlines the potential of using infinitesimally small nanoparticles – 50nm – between films to smooth out the tiny buckles that are the origin of wrinkles.

While the article addresses breakthroughs in the buckling of polymer films as they were compressed or heated during the manufacturing process, Ilsoon said the principles show promise to apply to human skin.

The research is supported by the National Science Foundation and the Michigan Economic Development Corp.

On all fronts, it's all about nailing a wrinkle before it starts.

"Everything starts at a really small scale, so if we can prevent the buckling at the very beginning – at the nano level – we can eliminate large scale wrinkles," Ilsoon said. "Wrinkles can initiate from the small scale, and when it grows we cannot remove it."

Nanoparticles already have entered the cosmetic marketplace because they can penetrate deeper into the skin, transporting vitamins and other compounds to plump and smooth tissue. But Ilsoon envisions thin films that can be injected beneath the thinning outer layer of the skin, the epidermis, that over time stiffens and buckles with aging, and the thicker dermis beneath it, which remains more pliable over time. Think of a raisin.

Ilsoon explained that nanoparticles spread in a thin film can break up the compressive forces on a plane and redirect them. Once the force is reduced below the critical buckling strain, the film will not buckle. No buckles, no wrinkles. The nanoparticles in the film can be stress busters without affecting the neighboring layers.

"The wrinkle-free films will automatically absorb or deflect the stress and stay flat, just as they are after formation," he said.

Nanoparticle films wouldn't be a face-lift itself, but Ilsoon sees the possibility in a film that could be added during a cosmetic procedure – such as an eyelift – to stabilize the improvements and prevent further wrinkling. He also sees applications in medical procedures – such as artificial skins for surgery.

The ideas are in the early stages with health and safety concerns to be worked through. Already Ilsoon's lab, with collaborators, is testing polymer films, by applying various cells and proteins to see if there are toxic reactions.

Ilsoon Lee | EurekAlert!
Further information:
http://www.egr.msu.edu

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>