Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology shows promise as next wrinkle fighter

17.01.2007
The next big idea in preventing wrinkles is very, very small.

Nano small.

A Michigan State University chemical engineer has discovered that nanoparticles can stop thin polymer films from buckling and wrinkling. It's a new solution to a critical problem as thin films become more important in new technology such as electronic monitors.

The cosmetic arsenal to fight human wrinkles embraces technologies that seems crossed with science fiction – from microdermabrasians to lasers to Botox injections – and nanoparticles are poised to join the war by warding off dreaded buckles in human skin.

Ilsoon Lee, an assistant professor of chemical engineering, along with Ph.D. student Troy Hendricks, published an online article in the American Chemical Society's Nano Letters in December 2006 that outlines the potential of using infinitesimally small nanoparticles – 50nm – between films to smooth out the tiny buckles that are the origin of wrinkles.

While the article addresses breakthroughs in the buckling of polymer films as they were compressed or heated during the manufacturing process, Ilsoon said the principles show promise to apply to human skin.

The research is supported by the National Science Foundation and the Michigan Economic Development Corp.

On all fronts, it's all about nailing a wrinkle before it starts.

"Everything starts at a really small scale, so if we can prevent the buckling at the very beginning – at the nano level – we can eliminate large scale wrinkles," Ilsoon said. "Wrinkles can initiate from the small scale, and when it grows we cannot remove it."

Nanoparticles already have entered the cosmetic marketplace because they can penetrate deeper into the skin, transporting vitamins and other compounds to plump and smooth tissue. But Ilsoon envisions thin films that can be injected beneath the thinning outer layer of the skin, the epidermis, that over time stiffens and buckles with aging, and the thicker dermis beneath it, which remains more pliable over time. Think of a raisin.

Ilsoon explained that nanoparticles spread in a thin film can break up the compressive forces on a plane and redirect them. Once the force is reduced below the critical buckling strain, the film will not buckle. No buckles, no wrinkles. The nanoparticles in the film can be stress busters without affecting the neighboring layers.

"The wrinkle-free films will automatically absorb or deflect the stress and stay flat, just as they are after formation," he said.

Nanoparticle films wouldn't be a face-lift itself, but Ilsoon sees the possibility in a film that could be added during a cosmetic procedure – such as an eyelift – to stabilize the improvements and prevent further wrinkling. He also sees applications in medical procedures – such as artificial skins for surgery.

The ideas are in the early stages with health and safety concerns to be worked through. Already Ilsoon's lab, with collaborators, is testing polymer films, by applying various cells and proteins to see if there are toxic reactions.

Ilsoon Lee | EurekAlert!
Further information:
http://www.egr.msu.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>