Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual gene therapy suppresses lung cancer in preclinical test

17.01.2007
Combination gene therapy delivered in lipid-based nanoparticles drastically reduces the number and size of human non-small cell lung cancer tumors in mice, researchers at The University of Texas M. D. Anderson Cancer Center and the University of Texas Southwestern Medical Center report in the Jan. 15 edition of Cancer Research.

Two tumor-suppressing genes given intravenously reduced cancer separately but had their most powerful effect when administered together, cutting the number of tumors per mouse by 75 percent and the weight of tumors by 80 percent.

"In cancer treatment we have combination chemotherapy, and we also combine different modes of therapy - surgery, radiation and chemotherapy. Now you've got the possibility of combined targeted gene therapy," said Jack Roth, M.D., professor and chair of the M. D. Anderson Department of Thoracic and Cardiovascular Surgery and a senior researcher on the project.

The genes wrapped in the nanoparticles were p53, a well-known tumor suppressor that works by causing defective cells to commit suicide and is often shut down or defective in cancer cells, and FUS1, a tumor-suppressor discovered by the research group that is deficient in most human lung cancers. Each nanoparticle carried one of the two genes.

The Cancer Research paper reports that FUS1 works with p53 to force the lung cancer cells to kill themselves - a process known as apoptosis.

Further analysis showed that the combination achieved greater cell suicide because FUS1 suppresses a gene that expresses a protein known to rapidly degrade p53, says senior author Lin Ji, Ph.D., M. D. Anderson associate professor of thoracic and cardiovascular surgery.

The FUS1/p53 combination also activates a cell suicide pathway based in the cells' mitochondria, their energy powerhouse.

Lab experiments first showed that the gene combination cut the number of viable cells in four lines of human non-small cell lung cancer by 70 to 80 percent 48 hours after treatment while leaving a control group of normal cells unaffected. The cancer cell lines treated with the gene combination had 2 to 3 times more cells killed by apoptosis than either gene nanoparticle had individually. The research team then confirmed these findings in the mouse studies.

The nanoparticle delivery system, which the researchers have used for years, consists of a plasmid gene expression cassette loaded with DNA that encodes either the p53 or the FUS1 protein. This is wrapped tightly in a form of cholesterol to protect it from the body's defense mechanisms. "You can't deliver naked DNA for cancer therapy," Ji says.

The nanoparticles accumulate mainly in the lungs, particularly in the tumors, Ji says. The positively charged nanoparticles are delivered to the negatively charged cancer cell membrane and taken into the cell, where the genes repeatedly express either p53 or FUS1 tumor-suppressing proteins.

Roth expects the research team to advance combination therapies to clinical trials in the coming years, either of genes or of genes with other biologic or chemotherapy agents.

"We certainly hope this approach will be more effective but we also think it's likely to be much less toxic, with fewer side effects, than other types of combined cancer therapy," Roth says. "These genes don't have much effect on normal tissue or normal cells when they are overexpressed. It's really just cancer cells where they seem to have their effect. Ultimately, the usefulness of this approach has to be proven in clinical trials."

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>