Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracing agent, ultrasound combo helps test cancer therapy's effectiveness

11.01.2007
An inexpensive tracing agent used in combination with ultrasound can pinpoint how effectively drugs targeting pancreatic cancer work, researchers at UT Southwestern Medical Center have demonstrated for the first time.

The study, involving human pancreatic tumor cells implanted in mice, opens a new avenue for real-time imaging of a patient’s response to cancer therapies. It appears in the Jan. 1 issue of the journal Clinical Cancer Research.

The UT Southwestern research team focused on pancreatic cancer because it is one of the deadliest cancers, characterized by extensive local invasion and metastasis to the liver, said Dr. Rolf Brekken, assistant professor of surgery and pharmacology and the study’s senior author. The five-year survival rate ranges from only 1 percent to 4 percent for patients diagnosed with the most severe form of cancer of the pancreas called pancreatic andenocarcinoma.

“The current best therapy — including surgery, radiation and chemotherapy — has done little to alter cancer-related deaths of these patients, emphasizing the need for more effective treatment,” said Dr. Brekken, a researcher at the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research at UT Southwestern.

The research team examined how pancreatic tumor cells respond to an experimental anti-cancer agent that targets vascular endothelial growth factor (VEGF), a protein responsible for triggering the development of blood vessels that deliver nutrients and oxygen to tumors, enabling them to grow and spread. Drugs that target VEGF are in a class called anti-angiogenic agents that are designed to choke tumor growth by reducing the number of blood vessels feeding the cancer.

“In general, it has been difficult to assess whether anti-angiogenic drugs are having an impact on tumors in human patients,” said Dr. Brekken. “The sooner we can measure the effectiveness of the treatment, the earlier we can intervene to change anti-cancer agents if a particular drug has no effect. This could be a lifesaving approach in patients with rapidly fatal disease.”

To find the answer, the UT Southwestern team resorted to an inexpensive and commonly used contrast, or tracing agent, called microbubbles. Each tiny bubble measures about one to two microns in diameter — about a hundredth the width of a human hair — and consists of albumin, sugar and an inert gas. Microbubbles are used routinely in echocardiography, for example, allowing cardiologists to see how efficiently and how much blood the heart pumps.

UT Southwestern researchers linked the microbubbles to a targeting agent that delivered the imaging agent to proteins or protein complexes on the surface of tumor blood vessels. They found that the ultrasound signal from the microbubbles decreased in mice that received therapy. The harmless microbubbles remained in the bloodstream and allowed researchers to use ultrasound to get a crisp picture of what was occurring on blood vessels inside the tumor, Dr. Brekken said.

In one of the studies reported, the researchers observed that blocking VEGF activity achieved a 40-percent reduction in mean tumor size after four treatments over a two-week period, a significant controlling of tumor growth, Dr. Brekken said. Importantly, the reduction in tumor size was predicted by the decrease in signal observed non-invasively with the targeted microbubbles.

“Ultrasound is a safe technology and most physicians have an ultrasound machine in their office,” Dr. Brekken said. “In addition, this monitoring technology would neither require radiation nor the injection of toxic substances for imaging purposes.

“We are the first group to show that this technique can be used to monitor the effectiveness of an anti-cancer agent,” he said.

The monitoring method developed by Dr. Brekken and his colleagues would need to obtain approval from the U.S. Food and Drug Administration before it could be used in humans. Microbubbles will have to be engineered for human patients and these microbubbles will need to be linked to anti-cancer agents using chemicals acceptable to the FDA for use in humans.

The research was supported by a grant from Peregrine Pharmaceuticals Inc, a biopharmaceutical company that has an exclusive license from the University of Texas System for the anti-VEGF agent that Dr. Brekken and other UT Southwestern researchers developed and are testing in several preclinical studies. Dr. Brekken also is a consultant to and has equity interest in the company.

Other UT Southwestern researchers contributing to the study included Juliet Carbon, a senior research associate at the Hamon Center; lead author Dr. Grzegorz “Greg” Korpanty, formerly a researcher at the Hamon Center and now a resident in internal medicine at Mater Misericordiae University Hospital in Dublin, Ireland; and Dr. Jason Fleming, former associate professor of surgery at UT Southwestern and now a surgical oncologist at the University of Texas M.D. Anderson Cancer Center. A researcher from Baylor University Medical Center in Dallas also participated.

Toni Heinzl | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>