Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fluid displacement from legs to neck can lead to obstructive sleep apnea

When a person lies down, a small amount of fluid displaced from the legs to the base of the neck can narrow soft tissue around the throat and increase airflow resistance in the pharynx by more than 100 percent, predisposing the person to obstructive sleep apnea.

The results appear in the second issue for December 2006 of the American Journal of Respiratory and Critical Care Medicine, published by the American Thoracic Society.

T. Douglas Bradley, M.D., of the Toronto General Hospital, and eight associates measured leg fluid volume, neck circumference and airflow resistance in the throats (pharynx) of 11 healthy, non-obese subjects while they lay on their backs. Next, the researchers applied a lower body positive pressure device (anti-shock trousers) for five minutes to displace fluid from the legs to the neck area.

In obstructive sleep apnea, a blockage in the throat or upper airway causes victims to repeatedly stop breathing long enough to decrease the amount of oxygen in the blood and increase the carbon dioxide. The National Heart, Lung, and Blood Institute estimates that 18 million Americans suffer from sleep apnea.

"Obesity and neck circumference are important risk factors in obstructive sleep apnea, but together only account for approximately one-third of the variability in the apnea-hyponea index," said Dr. Bradley. "A factor not ordinarily considered is fluid accumulation at the nape of the neck and around pharyngeal soft tissue. Obstructive sleep apnea is very common in fluid-retaining states such as heart failure, renal failure and peripheral edema of unknown cause."

"Our data show that displacement of a small amount of fluid such as 340 ml, about 12 ounces, from the legs is sufficient to cause a 102 percent increase in airflow resistance of the pharynx in healthy, non-obese subjects," continued Dr. Bradley

According to the authors, when the pharynx narrows in obstructive sleep apnea and in healthy subjects, airflow resistance increases as the person transits from wakefulness to sleep. Consequently, an even greater degree of fluid shift into the neck during sleep would cause further pharyngeal airflow obstruction.

The seven men and four women who participated in the study had an average age of 36. None had obstructive sleep apnea.

The authors noted that further studies would be required to determine whether fluid displacement increases pharyngeal obstruction as a person moves from upright to a recumbent position, especially when the person does not have a predisposing condition.

Suzy Martin | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>