Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leicester breakthrough in eye disease

13.12.2006
Researchers at the University of Leicester have identified for the first time a gene which causes a distressing eye condition. heir discovery, as reported in the journal Nature Genetics, is expected to lead to better treatments for the condition.

Nystagmus causes the eyes to move in an uncontrollable manner, so that people with the condition cannot keep their eyes still. Nystagmus can be congenital (occurs at birth or in early childhood) or acquired later in life due to neurological disease.

Congenital nystagmus is frequently genetic. Treatment can be surgical, by correcting an abnormal head position (which occurs because the nystagmus is quietest in a certain direction of gaze) or by correcting a squint. The effects of Nystagmus can also be reduced by drugs.

Recently, the University of Leicester Ophthalmology Group, headed by Professor Irene Gottlob, has shown that drug treatment is helpful in congenital nystagmus, as well as in the form that develops later.

The frequency of nystagmus is unknown. However, over the last six years the Leicester Ophthalmology Group has counted all patients with the condition in the ‘Leicestershire Nystagmus Survey’, showing an occurrence of more than two in 1000 people.

Professor Gottlob commented: "The discovery of this gene will make a genetic test for idiopathic X-linked nystagmus possible. So far it has not been understood what the causes of nystagmus are. The discovery of the gene will lead to greater understanding about the protein which is abnormal in nystagmus.

“Our research also showed that the expression of the protein is changed in neuronal cells of the eye and in certain parts of the brain. Further research is now needed to understand what functional changes in the brain the gene mutations are causing.

“This will be the first time the mechanisms of nystagmus have been understood, and we hope it will lead to better drug treatments. Understanding the mechanism of nystagmus will also improve our knowledge of the control in eye movements in general.”

Nystagmus, largely under-researched, is one of a significant number of interests within the Leicester Ophthalmology Group concerned with normal and abnormal eye movements. Researchers are looking into many aspects of nystagmus, including possible drug treatments, its epidemiology, impact on visual function, adaptation of the visual system to the constant eye movements, the causes of the condition and its genetic make-up.

They are also investigating other eye movement problems, such as reading in schizophrenia and treatment for amblyopia (a lazy eye), including patching therapy with special reward incentives and the education of parents and teachers.

The University of Leicester Ophthalmology Group is seeking financial support for both current and future research. Further details on the group’s work are available from tel 0116 258 6291 or email ig15@le.ac.uk

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>