Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A molecular condom against AIDS

12.12.2006
During sex, vaginal gel would liquefy, release anti-HIV drug

University of Utah scientists designed a "molecular condom" women could use daily to prevent AIDS by vaginally inserting a liquid that would turn into a gel-like coating and then, when exposed to semen, return to liquid form and release an antiviral drug.

"We have developed a new vaginal gel that we call a molecular condom because it is composed of molecules that are liquid at room temperature and, when applied in the vagina, will spread and turn into a gel and effectively coat the tissue," says Patrick Kiser, an assistant professor of bioengineering. "It's a smart molecular condom because we designed this gel to release anti-HIV drugs when the gel comes into contact with semen during intercourse."

"The ultimate hope for this technology is to protect women and their unborn or nursing children from the AIDS virus," but the molecular condom is five years away from tests in humans and roughly 10 years until it might be in widespread use, Kiser says.

Kiser and colleagues report development of the molecular condom in a study to be published online Monday, Dec. 11, 2006, in the Journal of Pharmaceutical Sciences.

The molecular condom is part of a worldwide research effort to develop "microbicides" – drug-delivery systems such as gels, rings, sponges or creams to prevent infection by the human immunodeficiency virus and other sexually transmitted diseases. HIV causes AIDS, which cripples the immune system, leaving patients vulnerable to other infections, cancers and death.

Microbicides are seen as a way for women to gain power by protecting themselves from HIV, particularly in impoverished nations where AIDS is widespread, where rape is rampant or where conventional condoms are taboo, not reliably available or where men resist using them. Worldwide, most AIDS cases are spread heterosexually.

About 16 microbicides are in development and five are undergoing testing in thousands of women, mostly in Africa. They are designed to fight HIV infection by preventing the virus from entering cells or replicating, or by maintaining acidic vaginal conditions. No first-generation microbicide has been approved yet for wide use.

Delivering Anti-HIV Medicine When and Where Needed

Kiser says the University of Utah molecular condom would be a more advanced method of delivering an antiviral drug to prevent infection by the AIDS virus.

"Up until now, most of the microbicide work has focused on the development of the active drug, not on the delivery of the drug," Kiser says. "This study and other work in my lab are directed at developing new technologies for vaginal delivery of antiviral agents, particularly a microbicide that can respond to triggers [body temperature and semen] that are present before, during and after intercourse. This is the first paper that begins to point in that direction."

Kiser says the dosage of anti-HIV drugs in first-generation microbicides lasts only a few hours, so "you have to use them an hour before sex, which is difficult. You only need one failure to get the disease. We're shooting for a microbicide delivery system that would be used once a day or once a month."

In the study, Kiser and colleagues outline how they designed a water-based gel or "hydrogel" sensitive to body temperature and pH (acidity or alkalinity) so that it could serve as a "smart semen-triggered vaginal microbiocidal vehicle."

The researchers have not yet tried incorporating an antiviral drug into the hydrogel, but showed that in laboratory conditions, the substance turns from a liquid to a gel at body temperature, then returns to liquid form and can release test compounds – stand-ins for antiAIDS drugs – when exposed to semen, which has a pH of 7.5, more alkaline than the acidic vaginal pH of 4 to 5.

Kiser conducted the research with University of Utah bioengineering graduate students Kavita Gupta and Meredith Roberts, and undergraduates Scott Barnes and Rachel Tangaro. The research is part of Gupta's doctoral thesis, and she did much of the work. Other coauthors of the study were bioengineers David Katz and Derek Owen at Duke University in Durham, N.C. The National Institutes of Health funded the study.

Designing a Microbicide to Empower Women

First-generation microbicides now being tested are expected to be available within four years and be 50 percent to 60 percent effective. That sounds low, but a British study found that even if a microbicide was only 50 percent effective against HIV and used by only 20 percent of the women in 73 developing nations, it would prevent 2.5 million infections during a three-year period. Kiser says he hopes the molecular condom ultimately will prove to be 90 percent effective.

Potential side effects of microbicides include itching, increased vaginal discharge and inflammation. But initial testing of the molecular condom – in which the hydrogel was tested on basic tissue cells known as mouse fibroblasts – "indicates these gels are likely to be well tolerated," Kiser says.

What about the comfort of a thin gel lining the vagina" "At the end of the day, women will use a material that protects them," he says. "But there is no reason to think these gels are uncomfortable."

The molecular condom is a polymer – a molecule with a repeating, chain-like structure – made from three chemicals in these proportions:

80 parts of N-isopropylacrylamide.

15 parts of butyl methacrylate, which is used in coatings, adhesives, solvents, resins, oil additives and to finish leather and paper.

Five parts acrylic acid, which is used in lubricant and spermicidal gels.

"The three together have the property of liquid at room temperature and vaginal pH, solid at body temperature and vaginal pH, and liquid at body temperature and semen pH," Kiser says.

Other researchers previously discovered this combination of chemicals forms a heat-sensitive gel, but Kiser and colleagues altered the polymer so it would change from liquid to gel and back at the desired temperature and pH. They also designed the gel so it would not dehydrate vaginal cells, which can trigger infections.

The researchers analyzed and optimized the gel's ability to adhere to a surface similar to vaginal tissue without being diluted by other fluids, but to erode rapidly in the presence of seminal fluid. Kiser says first-generation microbicides use gels like those in spermicides and lubricants, and are not optimized to coat and be retained in the vagina.

A Burst of Anti-AIDS Medicine

Kiser, Gupta and colleagues demonstrated how the polymer could change from liquid to gel at body temperature, then return to liquid form when exposed to simulated seminal fluid – a sticky mixture of sugars and salt—and release large and small molecules used as stand-ins for real medicines in drug-delivery experiments.

In the experiments, when the hydrogel molecular condom was exposed to mock seminal fluid, it released 49 percent of the small-molecule drug within five minutes and 81 percent within an hour. It released 48 percent of the large molecule drug within 30 minutes and 66 percent in 90 minutes.

The lab experiments were designed to make it difficult for the molecular condom to release simulated drugs, Kiser says. Inside a woman, the gel would be much thinner than in the lab tests, so antiviral drugs "would all be released in just a few minutes."

Kiser hopes to incorporate experimental anti-AIDS drugs known as entry inhibitors into the molecular condom.

Lee Siegel | EurekAlert!
Further information:
http://www.utah.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>