Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infectious disease researchers develop basis for experimental melanoma treatment

11.12.2006
While investigating a fungus known to cause an infection in people with AIDS, two grantees of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), unexpectedly discovered a potential strategy for treating metastatic melanoma, one of the deadliest forms of skin cancer.

The treatment approach, which involves combining an antibody with radiation, has since been further developed and is expected to enter early-stage human clinical studies in 2007.

"This is an excellent example of how scientific research in one discipline may have payoffs in a completely unpredictable way," says NIAID Director Anthony S. Fauci, M.D. "This important AIDS-related research has led to the development of a promising therapeutic strategy for a terrible cancer that affects thousands of people each year."

Arturo Casadevall, M.D., Ph.D., of the Albert Einstein College of Medicine at Yeshiva University, in New York City, and his research team began studying the biology of the skin pigment melanin to better understand why its synthesis plays a role in the process whereby certain yeast-like fungi, specifically Cryptococcus neoformans, cause disease in some people. C. neoformans can cause cryptococcosis, a potentially fatal fungal infection that can lead to inflammation of the brain and death in people with AIDS and other immunocompromised individuals.

The researchers created an infection-fighting antibody, known as a monoclonal antibody, that binds to melanin based on scientific evidence suggesting that when melanin is synthesized, it causes the immune system to react in a way that might create antibodies to fend off C. neoformans infection. Based on this finding, Dr. Casadevall theorized that melanomas might contain melanin that would allow the monoclonal antibody to deliver radiation to tumor cells. Dr. Casadevall then teamed with his colleague Ekaterina Dadachova, Ph.D., an expert in nuclear medicine and fellow NIAID grantee, to investigate whether the melanin-binding antibody could be converted into an anti-tumor drug.

In a study published in October 2004, Dr. Casadevall and Dr. Dadachova, the study's lead author, combined the C. neoformans monoclonal antibodies with radiation to create radiolabeled antibodies. They then tested these radiolabeled antibodies in mice to determine their effectiveness in attacking melanoma tumors. Initially, the mice had melanoma tumors ranging from 0.6 to 1.0 centimeters (cm) in diameter. After receiving a single dose of the radiolabeled antibodies, tumor growth was completely inhibited and near total tumor regression occurred in those animals with smaller tumors (0.6 to 0.7 cm in diameter). Further, the treated mice showed no signs of kidney or other organ damage and none died during the 30-day study. Conversely, tumors continued to aggressively grow in the untreated control group and by day 20, all but one of the eight untreated mice had died.

In November 2006, Pain Therapeutics, Inc., a San Francisco-based biopharmaceutical company, licensed the radiolabeled monoclonal antibody technology from the Albert Einstein College of Medicine. The company intends to begin testing it as a metastatic melanoma treatment in small human clinical trials in 2007. According to the American Cancer Society, melanoma accounts for approximately five percent of all skin cancers but causes roughly 75 percent of all skin cancer-related deaths.

Dr. Casadevall credits his promising discovery to luck and a hunch that paid off. "Scientific breakthroughs often occur completely through serendipity, and this is just one of those instances," says Dr. Casadevall. "We're still working on cryptococcosis and developing a general strategy for using radiolabeled monoclonal antibodies to fight infectious diseases."

His laboratory continues to examine the underlying causes of cryptococcosis, and in continued collaboration with Dr. Dadachova, is exploring the use of radiolabeled monoclonal antibodies to treat infectious diseases.

Kathy Stover | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>