Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infectious disease researchers develop basis for experimental melanoma treatment

11.12.2006
While investigating a fungus known to cause an infection in people with AIDS, two grantees of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), unexpectedly discovered a potential strategy for treating metastatic melanoma, one of the deadliest forms of skin cancer.

The treatment approach, which involves combining an antibody with radiation, has since been further developed and is expected to enter early-stage human clinical studies in 2007.

"This is an excellent example of how scientific research in one discipline may have payoffs in a completely unpredictable way," says NIAID Director Anthony S. Fauci, M.D. "This important AIDS-related research has led to the development of a promising therapeutic strategy for a terrible cancer that affects thousands of people each year."

Arturo Casadevall, M.D., Ph.D., of the Albert Einstein College of Medicine at Yeshiva University, in New York City, and his research team began studying the biology of the skin pigment melanin to better understand why its synthesis plays a role in the process whereby certain yeast-like fungi, specifically Cryptococcus neoformans, cause disease in some people. C. neoformans can cause cryptococcosis, a potentially fatal fungal infection that can lead to inflammation of the brain and death in people with AIDS and other immunocompromised individuals.

The researchers created an infection-fighting antibody, known as a monoclonal antibody, that binds to melanin based on scientific evidence suggesting that when melanin is synthesized, it causes the immune system to react in a way that might create antibodies to fend off C. neoformans infection. Based on this finding, Dr. Casadevall theorized that melanomas might contain melanin that would allow the monoclonal antibody to deliver radiation to tumor cells. Dr. Casadevall then teamed with his colleague Ekaterina Dadachova, Ph.D., an expert in nuclear medicine and fellow NIAID grantee, to investigate whether the melanin-binding antibody could be converted into an anti-tumor drug.

In a study published in October 2004, Dr. Casadevall and Dr. Dadachova, the study's lead author, combined the C. neoformans monoclonal antibodies with radiation to create radiolabeled antibodies. They then tested these radiolabeled antibodies in mice to determine their effectiveness in attacking melanoma tumors. Initially, the mice had melanoma tumors ranging from 0.6 to 1.0 centimeters (cm) in diameter. After receiving a single dose of the radiolabeled antibodies, tumor growth was completely inhibited and near total tumor regression occurred in those animals with smaller tumors (0.6 to 0.7 cm in diameter). Further, the treated mice showed no signs of kidney or other organ damage and none died during the 30-day study. Conversely, tumors continued to aggressively grow in the untreated control group and by day 20, all but one of the eight untreated mice had died.

In November 2006, Pain Therapeutics, Inc., a San Francisco-based biopharmaceutical company, licensed the radiolabeled monoclonal antibody technology from the Albert Einstein College of Medicine. The company intends to begin testing it as a metastatic melanoma treatment in small human clinical trials in 2007. According to the American Cancer Society, melanoma accounts for approximately five percent of all skin cancers but causes roughly 75 percent of all skin cancer-related deaths.

Dr. Casadevall credits his promising discovery to luck and a hunch that paid off. "Scientific breakthroughs often occur completely through serendipity, and this is just one of those instances," says Dr. Casadevall. "We're still working on cryptococcosis and developing a general strategy for using radiolabeled monoclonal antibodies to fight infectious diseases."

His laboratory continues to examine the underlying causes of cryptococcosis, and in continued collaboration with Dr. Dadachova, is exploring the use of radiolabeled monoclonal antibodies to treat infectious diseases.

Kathy Stover | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>