Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'GreeneChip' -- New diagnostic tool that rapidly and accurately identifies multiple pathogens

08.12.2006
Researchers in the Greene Infectious Disease Laboratory at Columbia University Mailman School of Public Health and their colleagues in the WHO Global Laboratory Network have developed a new tool for pathogen surveillance and discovery—the GreeneChip System.

The GreeneChip is the first tool to provide comprehensive, differential diagnosis of infectious diseases, including those caused by viruses, bacteria, fungi, or parasites. In addition, it is the first tool that can be used on a wide variety of samples, including tissue, blood, urine, and stool, allowing for the rapid identification of pathogens in a variety of laboratory and clinical settings.

The GreeneChip system and its application in an outbreak investigation when other methods failed to implicate a microorganism in a fatal hemorrhagic fever case is described in the January 2007 issue of the CDC’s Emerging Infectious Diseases (online December 6 at www.cdc.gov/EID/13/1/06-0837.htm).

Globalization of travel and trade brings new infectious agents into new contexts. It is increasingly important to be prepared for the unexpected. "Because clinical syndromes are rarely specific for single pathogens, methods that simultaneously screen for multiple agents are important, particularly when early accurate diagnosis can alter treatment or assist in containment of an outbreak," stated W. Ian Lipkin, MD, director of the Greene Infectious Disease Laboratory at the Mailman School’s Department of Epidemiology. He added, "To address the challenges of emerging infectious diseases and biodefense, public health practitioner and diagnosticians need a comprehensive set of tools for pathogen surveillance and detection."

GreeneChip features include a comprehensive microbial sequence database that integrates previously distinct reserves of information about pathogens—for every entry of a pathogen and its properties, the GreeneChip contains a correlate of its genetic makeup.

GreeneChip performance was initially tested by using samples obtained from patients with respiratory disease, hemorrhagic fever, tuberculosis, and urinary tract infections. In all cases, GreeneChip analysis detected an agent that was consistent with the diagnosis obtained by more traditional and slower methods, such as culture or polymerase chain reaction (PCR).

In addition, the GreeneChip was used in the analysis of an unknown sample from a patient with a viral hemorrhagic fever (VHF)-like syndrome. Within six to eight days of infection, Marburg virus causes an acute febrile illness that frequently progresses to liver failure, delirium, shock, and hemorrhage. From October 2004 through July 2005, a Marburg outbreak in Angola resulted in 252 cases of hemorrhagic fever, with 90% of the cases fatal. Although most of the cases were confirmed through PCR as caused by Marburg virus, some were not.

During this outbreak, a healthcare worker from a nongovernmental organization had acute fever and liver failure that culminated in death within one week. PCR assays of RNA extracted from blood showed no evidence of Marburg infection. The same RNA was processed for panviral analysis with the GreeneChip. Still nothing was detected. The RNA was then tested with the GreeneChip for parasites. Analysis identified a Plasmodium (the species of parasite that causes human malaria). Chart review showed that the patient had recently arrived in Angola from a country where malaria was not endemic and that he had not taken malaria prophylaxis. Had the GreeneChip been available in the field to confirm the correct pathogen, the patient could have been treated for malaria.

Differential diagnosis of hemorrhagic fevers poses challenges for clinical medicine and public health. Syndromes associated with agents are not distinctive, particularly early in the course of disease. In some instances, including the case presented above, more than one agent may be endemic in the region with an outbreak. Outbreaks caused by different agents may also overlap in time and geography.

"We are very excited to work with the WHO to make an impact in managing disease outbreaks globally—especially in regions of the world where resources are scarce," stated Thomas Briese, PhD, associate director of the Greene Laboratory.

Implicit in globalization is the risk of known or new agents that appear in novel contexts. In 1996 a presumptive diagnosis of Ebola viral hemorrhagic fever in two children who had recently returned to New York City from West Africa resulted in closing a hospital emergency room. For example, one of the children died of cardiac failure caused by plasmodium falciparum (malaria). Therapeutic options for treatment of VHF are limited; however, rapid isolation if infected persons is critical to curb contagion. In contrast, human-to-human transmission is not a primary concern with malaria and early, specific therapy can have a profound effect on illness and death. The GreeneChip provides unprecedented opportunities for unbiased pathogen discovery and reduction of illness and death caused by infectious disease.

Randee Sacks Levine | EurekAlert!
Further information:
http://www.cdc.gov/EID/13/1/06-0837.htm
http://www.columbia.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>