Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'GreeneChip' -- New diagnostic tool that rapidly and accurately identifies multiple pathogens

Researchers in the Greene Infectious Disease Laboratory at Columbia University Mailman School of Public Health and their colleagues in the WHO Global Laboratory Network have developed a new tool for pathogen surveillance and discovery—the GreeneChip System.

The GreeneChip is the first tool to provide comprehensive, differential diagnosis of infectious diseases, including those caused by viruses, bacteria, fungi, or parasites. In addition, it is the first tool that can be used on a wide variety of samples, including tissue, blood, urine, and stool, allowing for the rapid identification of pathogens in a variety of laboratory and clinical settings.

The GreeneChip system and its application in an outbreak investigation when other methods failed to implicate a microorganism in a fatal hemorrhagic fever case is described in the January 2007 issue of the CDC’s Emerging Infectious Diseases (online December 6 at

Globalization of travel and trade brings new infectious agents into new contexts. It is increasingly important to be prepared for the unexpected. "Because clinical syndromes are rarely specific for single pathogens, methods that simultaneously screen for multiple agents are important, particularly when early accurate diagnosis can alter treatment or assist in containment of an outbreak," stated W. Ian Lipkin, MD, director of the Greene Infectious Disease Laboratory at the Mailman School’s Department of Epidemiology. He added, "To address the challenges of emerging infectious diseases and biodefense, public health practitioner and diagnosticians need a comprehensive set of tools for pathogen surveillance and detection."

GreeneChip features include a comprehensive microbial sequence database that integrates previously distinct reserves of information about pathogens—for every entry of a pathogen and its properties, the GreeneChip contains a correlate of its genetic makeup.

GreeneChip performance was initially tested by using samples obtained from patients with respiratory disease, hemorrhagic fever, tuberculosis, and urinary tract infections. In all cases, GreeneChip analysis detected an agent that was consistent with the diagnosis obtained by more traditional and slower methods, such as culture or polymerase chain reaction (PCR).

In addition, the GreeneChip was used in the analysis of an unknown sample from a patient with a viral hemorrhagic fever (VHF)-like syndrome. Within six to eight days of infection, Marburg virus causes an acute febrile illness that frequently progresses to liver failure, delirium, shock, and hemorrhage. From October 2004 through July 2005, a Marburg outbreak in Angola resulted in 252 cases of hemorrhagic fever, with 90% of the cases fatal. Although most of the cases were confirmed through PCR as caused by Marburg virus, some were not.

During this outbreak, a healthcare worker from a nongovernmental organization had acute fever and liver failure that culminated in death within one week. PCR assays of RNA extracted from blood showed no evidence of Marburg infection. The same RNA was processed for panviral analysis with the GreeneChip. Still nothing was detected. The RNA was then tested with the GreeneChip for parasites. Analysis identified a Plasmodium (the species of parasite that causes human malaria). Chart review showed that the patient had recently arrived in Angola from a country where malaria was not endemic and that he had not taken malaria prophylaxis. Had the GreeneChip been available in the field to confirm the correct pathogen, the patient could have been treated for malaria.

Differential diagnosis of hemorrhagic fevers poses challenges for clinical medicine and public health. Syndromes associated with agents are not distinctive, particularly early in the course of disease. In some instances, including the case presented above, more than one agent may be endemic in the region with an outbreak. Outbreaks caused by different agents may also overlap in time and geography.

"We are very excited to work with the WHO to make an impact in managing disease outbreaks globally—especially in regions of the world where resources are scarce," stated Thomas Briese, PhD, associate director of the Greene Laboratory.

Implicit in globalization is the risk of known or new agents that appear in novel contexts. In 1996 a presumptive diagnosis of Ebola viral hemorrhagic fever in two children who had recently returned to New York City from West Africa resulted in closing a hospital emergency room. For example, one of the children died of cardiac failure caused by plasmodium falciparum (malaria). Therapeutic options for treatment of VHF are limited; however, rapid isolation if infected persons is critical to curb contagion. In contrast, human-to-human transmission is not a primary concern with malaria and early, specific therapy can have a profound effect on illness and death. The GreeneChip provides unprecedented opportunities for unbiased pathogen discovery and reduction of illness and death caused by infectious disease.

Randee Sacks Levine | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>