Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'GreeneChip' -- New diagnostic tool that rapidly and accurately identifies multiple pathogens

08.12.2006
Researchers in the Greene Infectious Disease Laboratory at Columbia University Mailman School of Public Health and their colleagues in the WHO Global Laboratory Network have developed a new tool for pathogen surveillance and discovery—the GreeneChip System.

The GreeneChip is the first tool to provide comprehensive, differential diagnosis of infectious diseases, including those caused by viruses, bacteria, fungi, or parasites. In addition, it is the first tool that can be used on a wide variety of samples, including tissue, blood, urine, and stool, allowing for the rapid identification of pathogens in a variety of laboratory and clinical settings.

The GreeneChip system and its application in an outbreak investigation when other methods failed to implicate a microorganism in a fatal hemorrhagic fever case is described in the January 2007 issue of the CDC’s Emerging Infectious Diseases (online December 6 at www.cdc.gov/EID/13/1/06-0837.htm).

Globalization of travel and trade brings new infectious agents into new contexts. It is increasingly important to be prepared for the unexpected. "Because clinical syndromes are rarely specific for single pathogens, methods that simultaneously screen for multiple agents are important, particularly when early accurate diagnosis can alter treatment or assist in containment of an outbreak," stated W. Ian Lipkin, MD, director of the Greene Infectious Disease Laboratory at the Mailman School’s Department of Epidemiology. He added, "To address the challenges of emerging infectious diseases and biodefense, public health practitioner and diagnosticians need a comprehensive set of tools for pathogen surveillance and detection."

GreeneChip features include a comprehensive microbial sequence database that integrates previously distinct reserves of information about pathogens—for every entry of a pathogen and its properties, the GreeneChip contains a correlate of its genetic makeup.

GreeneChip performance was initially tested by using samples obtained from patients with respiratory disease, hemorrhagic fever, tuberculosis, and urinary tract infections. In all cases, GreeneChip analysis detected an agent that was consistent with the diagnosis obtained by more traditional and slower methods, such as culture or polymerase chain reaction (PCR).

In addition, the GreeneChip was used in the analysis of an unknown sample from a patient with a viral hemorrhagic fever (VHF)-like syndrome. Within six to eight days of infection, Marburg virus causes an acute febrile illness that frequently progresses to liver failure, delirium, shock, and hemorrhage. From October 2004 through July 2005, a Marburg outbreak in Angola resulted in 252 cases of hemorrhagic fever, with 90% of the cases fatal. Although most of the cases were confirmed through PCR as caused by Marburg virus, some were not.

During this outbreak, a healthcare worker from a nongovernmental organization had acute fever and liver failure that culminated in death within one week. PCR assays of RNA extracted from blood showed no evidence of Marburg infection. The same RNA was processed for panviral analysis with the GreeneChip. Still nothing was detected. The RNA was then tested with the GreeneChip for parasites. Analysis identified a Plasmodium (the species of parasite that causes human malaria). Chart review showed that the patient had recently arrived in Angola from a country where malaria was not endemic and that he had not taken malaria prophylaxis. Had the GreeneChip been available in the field to confirm the correct pathogen, the patient could have been treated for malaria.

Differential diagnosis of hemorrhagic fevers poses challenges for clinical medicine and public health. Syndromes associated with agents are not distinctive, particularly early in the course of disease. In some instances, including the case presented above, more than one agent may be endemic in the region with an outbreak. Outbreaks caused by different agents may also overlap in time and geography.

"We are very excited to work with the WHO to make an impact in managing disease outbreaks globally—especially in regions of the world where resources are scarce," stated Thomas Briese, PhD, associate director of the Greene Laboratory.

Implicit in globalization is the risk of known or new agents that appear in novel contexts. In 1996 a presumptive diagnosis of Ebola viral hemorrhagic fever in two children who had recently returned to New York City from West Africa resulted in closing a hospital emergency room. For example, one of the children died of cardiac failure caused by plasmodium falciparum (malaria). Therapeutic options for treatment of VHF are limited; however, rapid isolation if infected persons is critical to curb contagion. In contrast, human-to-human transmission is not a primary concern with malaria and early, specific therapy can have a profound effect on illness and death. The GreeneChip provides unprecedented opportunities for unbiased pathogen discovery and reduction of illness and death caused by infectious disease.

Randee Sacks Levine | EurekAlert!
Further information:
http://www.cdc.gov/EID/13/1/06-0837.htm
http://www.columbia.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>