Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Premature babies probably feel and are aware of pain

08.12.2006
Although it is wellknown that premature babies react to pain, it has not been known to what extent they are aware of pain and uncomfortable procedures. Therefore premature infants have not always received sufficient analgesia.

Now, however, the grounds for this have been seriously undermined by a new doctoral thesis from Karolinska Institutet (KI) in Sweden. New measurement techniques show that even premature babies display all the signs of a conscious experience of pain.

For many years, doctors have assumed that foetuses, premature babies and fully developed new-born babies do not have the cerebral cortical functions required to feel pain. Babies’ reactions to potentially painful stimuli have been explained away as unconscious reflexes, and so doctors have felt it justified to withhold painkillers during surgery and the like so as to avoid adverse reactions.

The doctoral thesis by Italian-Swedish researcher Marco Bartocci now shows that the brains of premature babies are far more developed than previously thought. His studies using infrared spectroscopy, carried out at the Astrid Lindgren Children’s Hospital in Stockholm, Sweden, show that pain signals from a pin prick are processed in the cerebral cortex of premature babies in the same way as in adults. This means that all known pre-conditions for the conscience experience of pain are present, even though this still does not provide any conclusive evidence that they actually undergo a subjective painful experience.

The results of the processing of painful stimuli have been published in the scientific journal Pain and have been cited in a news article in Nature. They are expected to have a major impact on pain-relief management for new-born babies as well as on approaches to child development in general. Public defence of doctoral thesis will be held on December 8. Professor Michael Wweindling from the University of Liverpool, UK is the external examiner.

Thesis: Brain functional near infrared spectroscopy in human infants: cerebral cortical haemodynamics coupled to neuronal activation in response to sensory stimulation , Department of Women and Child Health, KI.

Katarina Sternudd | alfa
Further information:
http://www.ki.se

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>