Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taste test may identify best drugs for depression

06.12.2006
New research has shown that it might be possible to use taste as an indicator as to whether someone is depressed, and as a way of determining which is the most suitable drug to treat their depression.

Research from the University of Bristol has shown that our ability to recognise certain tastes can be improved by administering drugs usually given for depression.

The researchers gave healthy volunteers antidepressant drugs that increase levels of the neurotransmitters serotonin and noradrenaline. They report today in the Journal of Neuroscience that these tests resulted in the volunteers being able to detect different tastes (salt, sugar, sour, and bitter) at lower concentrations, thus enhancing their ability to taste.

Dr Lucy Donaldson, senior author on the paper, said: “When we increased serotonin levels we found that people could recognise sweet and bitter taste at much lower concentrations than when their serotonin levels were normal. With increased noradrenaline levels the same people could recognise bitter and sour tastes at lower concentrations. Salt taste doesn’t seem to be affected at all by altering either of these neurotransmitters.”

She added: “Because we have found that different tastes change in response to changes in the two different neurotransmitters, we hope that using a taste test in depressed people will tell us which neurotransmitter is affected in their illness.”

Dr Jan Melichar, the lead psychiatrist on the paper, added: “This is very exciting. Until now we have had no easy way of deciding which is the best medication for depression. As a result, we get it right about 60-80% of the time. It then takes up to four weeks to see if the drug is working, or if we need to change it. However, with a taste test, we may be able to get it right first time.”

Taste is often thought to be determined genetically and, until now, people assumed it was fixed throughout life. But these studies show that the ability to recognise different tastes can be altered by the neurotransmitters serotonin and noradrenaline and by people’s mood.

In the study, three drugs were given to the volunteers: SSRI (serotonin specific reuptake inhibitor) to raise serotonin levels; NARI (noradrenaline reuptake inhibitor) to raise noradrenaline levels (another neurotransmitter important in depression, and also found in taste buds); and an inactive placebo.

The volunteers were first tested for their ability to recognise certain tastes. The drug was then administered and two hours afterwards they were asked to take the same test again.

The volunteers were also assessed for anxiety levels, their overall level of anxiety being related to their ability to taste – the more anxious a person was, the less sensitive to bitter and salt taste they were.

These results give an important insight into how neurotransmitters affect the taste system. It seems that tasting bitter things can be changed by changes in both serotonin and noradrenaline levels, that sweet taste is affected by only serotonin levels, and that sour taste is affected by noradrenaline.

These findings may also explain why anxious and depressed individuals have diminished appetite. The results also show that taste is related to anxiety levels, even in generally well people.

Cherry Lewis | alfa
Further information:
http://www.bristol.ac.uk

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>