Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global malaria map key weapon in fight against malaria

05.12.2006
For the first time in almost forty years, researchers are creating a global map of malaria risk. The Malaria Atlas Project, or MAP, will help identify populations at particular risk and predict the impact of the disease, allowing health resources to be targeted at those areas most at risk. Malaria is thought to kill over a million people every year, mostly children and pregnant women.

The research, funded by the Wellcome Trust, the UK's largest biomedical research charity, involves a collaboration between the Kenya Medical Research Institute (KEMRI) and the University of Oxford. Details and goals of the project are announced today in the open access journal PLoS Medicine.

Researchers from Kenya and Oxford will use information from satellites, population censuses and other electronic data related to factors that determine the presence of mosquitoes carrying the malaria parasites and the likelihood they will infect humans. Statistical approaches will enable comparisons to be made between areas where information exists with areas where there is no information to fill in the "gaps" to create a global map of malaria risk worldwide.

"At the moment, information on malaria infections and the impact of the disease remains the subject of best guesses based on national reporting systems, historical data or unvalidated models of malaria distribution," says Dr Simon Hay from the University of Oxford, who is based at KEMRI. "Resources for tackling malaria are driven by a mixture of perception and politics rather than an objective assessment of need. Clearly, this situation is untenable."

New anti-malarial drugs and commodities to prevent infection are available, but these are often expensive and the researchers are concerned that without an accurate measure of the impact of malaria, global and national finances will not be able to meet the need for these interventions.

"How we design malaria control and measure its impact depends on knowing how much malaria exists in a given area," says Professor Bob Snow, also from the University of Oxford and based at KEMRI. "Like any war, knowing where your enemy is located and in what strength determines how you engage them. Intelligence is key – without an intelligent approach to global malaria control I fear there will be much wasted funding and many missed opportunities."

Malaria scientists collect information on how many people are infected with malaria parasites, but MAP will be the first time that all the data have been gathered into a single source and linked to a map of the world. MAP has so far assembled information from 3126 communities in 79 countries and represents the single largest repository of contemporary information of malaria risk to-date. Importantly, MAP has been developed with an open-access philosophy to the data it gathers, allowing researchers anywhere in the world to access the data for free.

"We hope to provide a unique example of how medical intelligence linked maps can assist all partners concerned with the control of malaria," said Dr Carlos Guerra, a member of the MAP team who developed an interface between the MAP data and the widely used Google Earth.

It is almost 40 years since the first global map of malaria risk and burden was created. Ten years ago, researchers at KEMRI and the University of Oxford voiced the need to develop a detailed map of malaria transmission in Africa. Professor Snow and his team hope that MAP will fill this gap in knowledge.

Craig Brierley | alfa
Further information:
http://www.plos.org/press/plme-03-12-hay.pdf
http://www.wellcome.ac.uk

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>