Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global malaria map key weapon in fight against malaria

05.12.2006
For the first time in almost forty years, researchers are creating a global map of malaria risk. The Malaria Atlas Project, or MAP, will help identify populations at particular risk and predict the impact of the disease, allowing health resources to be targeted at those areas most at risk. Malaria is thought to kill over a million people every year, mostly children and pregnant women.

The research, funded by the Wellcome Trust, the UK's largest biomedical research charity, involves a collaboration between the Kenya Medical Research Institute (KEMRI) and the University of Oxford. Details and goals of the project are announced today in the open access journal PLoS Medicine.

Researchers from Kenya and Oxford will use information from satellites, population censuses and other electronic data related to factors that determine the presence of mosquitoes carrying the malaria parasites and the likelihood they will infect humans. Statistical approaches will enable comparisons to be made between areas where information exists with areas where there is no information to fill in the "gaps" to create a global map of malaria risk worldwide.

"At the moment, information on malaria infections and the impact of the disease remains the subject of best guesses based on national reporting systems, historical data or unvalidated models of malaria distribution," says Dr Simon Hay from the University of Oxford, who is based at KEMRI. "Resources for tackling malaria are driven by a mixture of perception and politics rather than an objective assessment of need. Clearly, this situation is untenable."

New anti-malarial drugs and commodities to prevent infection are available, but these are often expensive and the researchers are concerned that without an accurate measure of the impact of malaria, global and national finances will not be able to meet the need for these interventions.

"How we design malaria control and measure its impact depends on knowing how much malaria exists in a given area," says Professor Bob Snow, also from the University of Oxford and based at KEMRI. "Like any war, knowing where your enemy is located and in what strength determines how you engage them. Intelligence is key – without an intelligent approach to global malaria control I fear there will be much wasted funding and many missed opportunities."

Malaria scientists collect information on how many people are infected with malaria parasites, but MAP will be the first time that all the data have been gathered into a single source and linked to a map of the world. MAP has so far assembled information from 3126 communities in 79 countries and represents the single largest repository of contemporary information of malaria risk to-date. Importantly, MAP has been developed with an open-access philosophy to the data it gathers, allowing researchers anywhere in the world to access the data for free.

"We hope to provide a unique example of how medical intelligence linked maps can assist all partners concerned with the control of malaria," said Dr Carlos Guerra, a member of the MAP team who developed an interface between the MAP data and the widely used Google Earth.

It is almost 40 years since the first global map of malaria risk and burden was created. Ten years ago, researchers at KEMRI and the University of Oxford voiced the need to develop a detailed map of malaria transmission in Africa. Professor Snow and his team hope that MAP will fill this gap in knowledge.

Craig Brierley | alfa
Further information:
http://www.plos.org/press/plme-03-12-hay.pdf
http://www.wellcome.ac.uk

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>