Global malaria map key weapon in fight against malaria

The research, funded by the Wellcome Trust, the UK's largest biomedical research charity, involves a collaboration between the Kenya Medical Research Institute (KEMRI) and the University of Oxford. Details and goals of the project are announced today in the open access journal PLoS Medicine.

Researchers from Kenya and Oxford will use information from satellites, population censuses and other electronic data related to factors that determine the presence of mosquitoes carrying the malaria parasites and the likelihood they will infect humans. Statistical approaches will enable comparisons to be made between areas where information exists with areas where there is no information to fill in the “gaps” to create a global map of malaria risk worldwide.

“At the moment, information on malaria infections and the impact of the disease remains the subject of best guesses based on national reporting systems, historical data or unvalidated models of malaria distribution,” says Dr Simon Hay from the University of Oxford, who is based at KEMRI. “Resources for tackling malaria are driven by a mixture of perception and politics rather than an objective assessment of need. Clearly, this situation is untenable.”

New anti-malarial drugs and commodities to prevent infection are available, but these are often expensive and the researchers are concerned that without an accurate measure of the impact of malaria, global and national finances will not be able to meet the need for these interventions.

“How we design malaria control and measure its impact depends on knowing how much malaria exists in a given area,” says Professor Bob Snow, also from the University of Oxford and based at KEMRI. “Like any war, knowing where your enemy is located and in what strength determines how you engage them. Intelligence is key – without an intelligent approach to global malaria control I fear there will be much wasted funding and many missed opportunities.”

Malaria scientists collect information on how many people are infected with malaria parasites, but MAP will be the first time that all the data have been gathered into a single source and linked to a map of the world. MAP has so far assembled information from 3126 communities in 79 countries and represents the single largest repository of contemporary information of malaria risk to-date. Importantly, MAP has been developed with an open-access philosophy to the data it gathers, allowing researchers anywhere in the world to access the data for free.

“We hope to provide a unique example of how medical intelligence linked maps can assist all partners concerned with the control of malaria,” said Dr Carlos Guerra, a member of the MAP team who developed an interface between the MAP data and the widely used Google Earth.

It is almost 40 years since the first global map of malaria risk and burden was created. Ten years ago, researchers at KEMRI and the University of Oxford voiced the need to develop a detailed map of malaria transmission in Africa. Professor Snow and his team hope that MAP will fill this gap in knowledge.

Media Contact

Craig Brierley alfa

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors