Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exercise when young may reduce risk of fractures later in life

04.12.2006
Running and jumping during childhood is more than child's play; it provides lifelong benefits for future bone health and appears to reduce the risk of fractures later in life according to a Journal of Bone and Mineral Research study by Indiana University-Purdue University Indianapolis (IUPUI) researchers. The study is now available in an advance online edition of the journal and will appear in a print edition in 2007.

"Our study demonstrates that exercise when young may reduce the risk of fractures later in life, and the old exercise adage of 'use it or lose it' may not be entirely applicable to the skeleton," said the study's principal investigator, Stuart J. Warden, assistant professor and director of research in physical therapy at the Indiana University School of Health and Rehabilitation Sciences at IUPUI.

Researchers exercised the right forearms of 5-week-old female rats for a few minutes three times a week for seven weeks. The left forearms were not exercised. Bone quantity and structure of the rats' right and left forearms were assessed before and after exercise. Researchers did not exercise the rats for the next 92 weeks -- virtually their entire lifespan. At that point, their forearm bones were assessed again for bone quantity and structure, as well as strength.

All procedures were performed following approval of the Institutional Animal Care and Use Committee of Indiana University.

"We knew that exercise increases bone size and strength, and that the skeleton is most responsive to exercise during the crucial growing years around puberty when you reach adult size and strength," Warden said. "We also knew that bones are not as responsive to exercise when you are older."

What was not known, however, was if the skeletal benefits of exercising while young would last a lifetime, Warden said. In other words, he said, "can you use activity while young to offset the risk of osteoporosis, or the risk of bone fractures, later in life""

The study determined the answer to that question is, "Yes," Warden said.

The researchers found that the rats retained all of the skeletal exercise benefits they obtained while young even though they hadn't exercised for the rest of their lives, Warden said.

"We found the exercise resulted in a lifetime increase in bone size in the right forearms of the rats and the bones of the left forearms never caught up in size," he said.

How big a bone is determines how resistant it is to bending, or how strong it is, he said.

As humans age, bone loss occurs from the inside surface of the bone outward, Warden noted. Exercising while young lays down additional outside layers of bone. This results in a bigger bone than otherwise would be the case.

"With more bone layers on the outside, you have more bone to lose," Warden said.

By making the right forearm bones bigger during growth in their study, the researchers found these bones to be stronger, or more resistant to fracture, than left forearm bones despite exercise being ceased a lifetime ago.

The study demonstrates the importance of childhood exercise that stimulates the skeleton, like basketball or jumping, Warden said. Short periods of exercise several times a week are all that is needed to stimulate bone development in children, he added.

The message to older adults, however, remains the same. Even though the best time to gain lifetime bone health benefits is while people are young, exercising when people are older is essential to maintain bone mass and balance, as well as maintain aerobic fitness, all of which aid in reducing the risk of low-trauma (osteoporotic) fractures associated with aging.

Diane Brown | EurekAlert!
Further information:
http://www.iupui.edu
http://www.jbmronline.org/toc/jbmr/0/0

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>