Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic 'firestorms' underlie aggressive breast cancer progression

01.12.2006
Distinct genomic profiles useful for clinical diagnosis and therapy

The first high-resolution analysis of genomic alterations in breast tumors is reported today in the scientific journal Genome Research. In this analysis, scientists from Cold Spring Harbor Laboratory, in collaboration with researchers from Scandinavia, identified three distinct patterns of genomic variation that underlie breast tumor formation, one of which--'firestorms'--may be predictive of aggressive disease progression and short survival.

"'Firestorms' are violent genomic disruptions that lead to destructive forms of breast cancer, even when the rest of the genome is relatively quiet," explains Dr. Jim Hicks, Senior Research Investigator at Cold Spring Harbor Laboratory and lead author on the paper.

Large-scale DNA alterations in cancer cells--rearrangements, deletions, and duplications--may assist in the proliferation and progression of the disease. "A thorough understanding of these changes will allow the design of more rational therapies," says Hicks. "Doctors will be able to recommend an appropriate course of treatment--hormonal therapy or chemotherapy--based on a patient's genomic profile."

Using a high-resolution genomic profiling technique called ROMA (Representational Oligonucleotide Microarray Analysis; see http://www.cshl.edu/public/releases/revealing.html), the scientists tested genomic DNA samples from 243 breast tumor samples acquired from the Karolinska Institute (Sweden) and the Oslo Micrometastasis Study (Norway). The samples were from patients whose clinical history had been documented, which allowed the scientists to associate the genomic profiles with clinical outcomes.

Most strikingly, Hicks and his co-workers found 'firestorms' of genomic amplification--tight chromosomal clusters where DNA segments had undergone multiple rounds of breakage, copying, and rejoining in a concerted manner. 'Firestorms' were found in 25% of the breast cancer samples and were associated with negative clinical outcomes. The amplifications were generally limited to single chromosomal arms and were flanked by broad segments of low-copy-number duplications and deletions.

Another complex genomic profile, called 'sawtooth,' was present in 5% of breast cancer samples. It was characterized by narrow, low-copy-number deletions and duplications that were evenly distributed across the chromosomes. The 'simplex' profile, affecting 60% of the tumor samples, exhibited broad genomic duplications and deletions that only affected a single chromosomal arm. The remaining 10% of the samples exhibited a 'flat' profile, reflecting normal levels of copy number variation in the genome (see http://www.cshl.edu/public/releases/genome.html).

In addition to potential clinical applications, the profiles described in this study will be useful for assessing the relationship between 'firestorms' and the locations of candidate oncogenes and tumor suppressors in the genome. It will assist the researchers in identifying genes that drive cancer progression, and help unravel the complex yet elusive genetic pathway that underlies tumor metastasis.

Maria A. Smit | EurekAlert!
Further information:
http://www.genome.org
http://www.cshl.edu/public/releases/genome.html

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>