Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic 'firestorms' underlie aggressive breast cancer progression

01.12.2006
Distinct genomic profiles useful for clinical diagnosis and therapy

The first high-resolution analysis of genomic alterations in breast tumors is reported today in the scientific journal Genome Research. In this analysis, scientists from Cold Spring Harbor Laboratory, in collaboration with researchers from Scandinavia, identified three distinct patterns of genomic variation that underlie breast tumor formation, one of which--'firestorms'--may be predictive of aggressive disease progression and short survival.

"'Firestorms' are violent genomic disruptions that lead to destructive forms of breast cancer, even when the rest of the genome is relatively quiet," explains Dr. Jim Hicks, Senior Research Investigator at Cold Spring Harbor Laboratory and lead author on the paper.

Large-scale DNA alterations in cancer cells--rearrangements, deletions, and duplications--may assist in the proliferation and progression of the disease. "A thorough understanding of these changes will allow the design of more rational therapies," says Hicks. "Doctors will be able to recommend an appropriate course of treatment--hormonal therapy or chemotherapy--based on a patient's genomic profile."

Using a high-resolution genomic profiling technique called ROMA (Representational Oligonucleotide Microarray Analysis; see http://www.cshl.edu/public/releases/revealing.html), the scientists tested genomic DNA samples from 243 breast tumor samples acquired from the Karolinska Institute (Sweden) and the Oslo Micrometastasis Study (Norway). The samples were from patients whose clinical history had been documented, which allowed the scientists to associate the genomic profiles with clinical outcomes.

Most strikingly, Hicks and his co-workers found 'firestorms' of genomic amplification--tight chromosomal clusters where DNA segments had undergone multiple rounds of breakage, copying, and rejoining in a concerted manner. 'Firestorms' were found in 25% of the breast cancer samples and were associated with negative clinical outcomes. The amplifications were generally limited to single chromosomal arms and were flanked by broad segments of low-copy-number duplications and deletions.

Another complex genomic profile, called 'sawtooth,' was present in 5% of breast cancer samples. It was characterized by narrow, low-copy-number deletions and duplications that were evenly distributed across the chromosomes. The 'simplex' profile, affecting 60% of the tumor samples, exhibited broad genomic duplications and deletions that only affected a single chromosomal arm. The remaining 10% of the samples exhibited a 'flat' profile, reflecting normal levels of copy number variation in the genome (see http://www.cshl.edu/public/releases/genome.html).

In addition to potential clinical applications, the profiles described in this study will be useful for assessing the relationship between 'firestorms' and the locations of candidate oncogenes and tumor suppressors in the genome. It will assist the researchers in identifying genes that drive cancer progression, and help unravel the complex yet elusive genetic pathway that underlies tumor metastasis.

Maria A. Smit | EurekAlert!
Further information:
http://www.genome.org
http://www.cshl.edu/public/releases/genome.html

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>