Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell death following blood 'reflow' injury tracked to natural toxin

01.12.2006
Researchers at Johns Hopkins have discovered what they believe is the "smoking gun" responsible for most tissue and organ damage after a period of blood oxygen loss followed by a sudden restoration of blood oxygen flow.

Working with mice, the Hopkins team found that the sudden oxygen bath triggered by restored blood flow causes cells to make a chemical so toxic it kills the cells. The work was published in two papers in the Proceedings of the National Academy of Sciences last week.

Although not sure why it happens, the Hopkins scientists believe the toxic chemical, PAR-polymer, acts like a molecular sledgehammer, or a death switch. "We've found evidence of it in cells following all types of injury," says Ted Dawson, M.D., Ph.D., the Leonard and Madlyn Abramson Professor of Neurodegenerative Diseases, professor of neurology and co-director of Hopkins' Neuroregeneration and Repair Program in the Institute of Cell Engineering (ICE).

The research team has named the cell death process caused by PAR-polymer "parthanatos," after Thanatos, the personification of death from Greek mythology.

To establish that PAR-polymer is indeed the culprit in the kind of reperfusion injuries long linked to heart attacks, strokes and a variety of blood vessel injuries, the researchers pumped mouse nerve cells full of PAR-polymer. The cells died, but to be sure PAR-polymer (and not something else) killed them, they examined the brains of mice engineered to lack an enzyme that chews up and gets rid of PAR. These mouse brains contained twice as much PAR-polymer as those of normal mice.

After the researchers induced a blood clot injury like a stroke, the same mice showed a 62 percent increase in the area of brain damage compared to normal littermates. Mice that contain more of the PAR-chewing enzyme suffered less brain damage than their normal littermates.

To figure out what triggers the death switch, the researchers tracked PAR-polymer's journey after cells made it. After 15 minutes, PAR-polymer hadn't gone anywhere. But after 30 to 60 minutes, the researchers discovered that much of it traveled right to areas where the switch normally resides.

The fate of the cell is irreversible once PAR-polymer sets off the trigger, says Valina Dawson, Ph.D., professor of neurology, co-director of the Neuroregeneration and Repair Program and author of the papers. "If we could figure out how to block PAR-polymer, we could design drugs that protect the switch and prevent cells from dying after heart attacks, stroke or other injuries," she says.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.neuroice.org/

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>