Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chronic back pain linked to changes in the brain

30.11.2006
A German research team using a specialized imaging technique revealed that individuals suffering from chronic low back pain also had microstructural changes in their brains. The findings were presented today at the annual meeting of the Radiological Society of North America (RSNA).

The researchers, led by Jürgen Lutz, M.D., a radiology resident at University Hospital, Ludwig-Maximilians University in Munich, Germany, used a technique called diffusion tensor imaging (DTI) to track the movement of water molecules in the brain’s gray and white matter.

“A major problem for patients with chronic pain is making their condition believable to doctors, relatives and insurance carriers. DTI could play an important role in this regard,” Dr. Lutz said. “With these objective and reproducible correlates in brain imaging, chronic pain may no longer be a subjective experience. For pain diagnosis and treatment, the consequences could be enormous.”

Individual water molecules are constantly in motion, colliding with each other and other nearby molecules, causing them to spread out, or diffuse. DTI allows scientists to analyze water diffusion in the tissues of the brain that indicate changes in brain cell organization.

“In normal white matter, water diffuses in one main direction,” Dr. Lutz explained. “But when fiber pathways are developing during childhood or are extensively used, their microstructural organization becomes more organized and complex with measurable changes in diffusion.”

Dr. Lutz and colleagues studied 20 patients experiencing chronic back pain with no precisely identifiable cause and 20 age- and gender-matched healthy control patients. DTI was performed to measure the diffusion in several areas of each patient’s brain.

Compared to the healthy volunteers, the patients with chronic low back pain had a significantly more directed diffusion in the three pain-processing regions of the brain, including the cingulate gyrus, postcentral gyrus and superior frontal gyrus.

“Our results reveal that in chronic pain sufferers, the organization of cerebral microstructure is much more complex and active in the areas of the brain involved in pain processing, emotion and the stress response,” said co-author Gustav Schelling, M.D., Ph.D. from the Department of Anaesthesiology at Munich University.

The researchers said the findings may help explain the extreme resistance to treatment for chronic low back pain and provide much-needed evidence for individual sufferers. However, it is unclear which occurs first, the chronic back pain or the microstructural changes in the brain.

“It’s difficult to know whether these are pre-existing changes in the brain that predispose an individual to developing chronic pain, whether ongoing pain creates the hyperactivity that actually changes the brain organization, or if it is some mixture of both,” Dr. Schelling said. “DTI may help explain what’s happening for some of these patients, and direct therapeutic attention from the spine to the brain,” he added.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>