Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemotherapy can be more toxic to brain cells than to cancer cells and may cause long-term brain damage

30.11.2006
Drugs used to treat cancer may damage normal, healthy brain cells more than the cancer cells they are meant to target.

A study published today in the open access journal Journal of Biology shows that clinical doses of chemotherapeutic drugs used to treat many common cancers cause long-term damage to the brains of mice by killing neural stem cells and oligodendrocytes, which produce the myelin insulation needed for normal neuronal function, and by impairing neural stem cell division. These results might explain the adverse neurological side effects - including reduction in cognitive abilities - observed in some cancer patients treated with chemotherapy. The approach used in the current study could also provide a rapid screening method to analyse new therapies and identify cell populations at risk during cancer treatment.

Joerg Dietrich and colleagues working in the group of Mark Noble, from the University of Rochester in the USA, exposed human neural stem cells, oligodendrocyte precursor cells and neuron-restricted precursor cells, in culture, to three chemotherapeutic agents: cisplatin, carmustine and cytarabine. Dietrich et al. also exposed different human cancer cell lines, such as uterine, breast or colon cancer cell lines to the same chemotherapeutic agents. Cisplatin is used to treat a wide range of cancers, including breast cancer, lung cancer and colon cancer and carmustine is used to treat brain tumours, Hodgkin and non-Hodgkin lymphomas. Both agents act by modifying the structure of DNA. Cytarabine, which interferes with cell metabolism, is used to treat leukaemia and lymphomas.

Dietrich et al.’s results show that clinical concentrations of cisplatin, carmustine and cytarabine are more toxic to human neural cells than to cancer cells. The drugs are toxic to both the dividing neural stem cells and the non-dividing cells such as astrocytes and neurons, even at very low concentrations. Results show that exposure to low micromolar concentrations of cisplatin, carmustine or cytarabine causes a 60-90% reduction in the viability of oligodendrocyte precursor cells and neuron precursor cells, but has little effect on most of the cancer cell lines examined. The authors show that to kill 40-80% of cancer cells, doses that also kill 70-100% of neural cells are required.

Using live mice treated with each of the drugs, Dietrich et al. show that cells of the nervous system of the mice continue to die for at least six weeks after the end of treatment. The drugs kill both dividing stem cells and non-dividing precursor cells of the nervous system in live mice. They also cause long-lasting reductions in cell division and proliferation in the central nervous system of the mice.

Juliette Savin | alfa
Further information:
http://www.biomedcentral.com

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>