Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemotherapy can be more toxic to brain cells than to cancer cells and may cause long-term brain damage

30.11.2006
Drugs used to treat cancer may damage normal, healthy brain cells more than the cancer cells they are meant to target.

A study published today in the open access journal Journal of Biology shows that clinical doses of chemotherapeutic drugs used to treat many common cancers cause long-term damage to the brains of mice by killing neural stem cells and oligodendrocytes, which produce the myelin insulation needed for normal neuronal function, and by impairing neural stem cell division. These results might explain the adverse neurological side effects - including reduction in cognitive abilities - observed in some cancer patients treated with chemotherapy. The approach used in the current study could also provide a rapid screening method to analyse new therapies and identify cell populations at risk during cancer treatment.

Joerg Dietrich and colleagues working in the group of Mark Noble, from the University of Rochester in the USA, exposed human neural stem cells, oligodendrocyte precursor cells and neuron-restricted precursor cells, in culture, to three chemotherapeutic agents: cisplatin, carmustine and cytarabine. Dietrich et al. also exposed different human cancer cell lines, such as uterine, breast or colon cancer cell lines to the same chemotherapeutic agents. Cisplatin is used to treat a wide range of cancers, including breast cancer, lung cancer and colon cancer and carmustine is used to treat brain tumours, Hodgkin and non-Hodgkin lymphomas. Both agents act by modifying the structure of DNA. Cytarabine, which interferes with cell metabolism, is used to treat leukaemia and lymphomas.

Dietrich et al.’s results show that clinical concentrations of cisplatin, carmustine and cytarabine are more toxic to human neural cells than to cancer cells. The drugs are toxic to both the dividing neural stem cells and the non-dividing cells such as astrocytes and neurons, even at very low concentrations. Results show that exposure to low micromolar concentrations of cisplatin, carmustine or cytarabine causes a 60-90% reduction in the viability of oligodendrocyte precursor cells and neuron precursor cells, but has little effect on most of the cancer cell lines examined. The authors show that to kill 40-80% of cancer cells, doses that also kill 70-100% of neural cells are required.

Using live mice treated with each of the drugs, Dietrich et al. show that cells of the nervous system of the mice continue to die for at least six weeks after the end of treatment. The drugs kill both dividing stem cells and non-dividing precursor cells of the nervous system in live mice. They also cause long-lasting reductions in cell division and proliferation in the central nervous system of the mice.

Juliette Savin | alfa
Further information:
http://www.biomedcentral.com

More articles from Health and Medicine:

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

nachricht Cardiac diseases: when less is more
30.03.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>