Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zinc plays important role in brain circuitry

24.11.2006
To the multitude of substances that regulate neuronal signaling in the brain and spinal cord add a new key player: zinc.

By engineering a mouse with a mutation affecting a neuronal zinc target, researchers have demonstrated a central role for zinc in modulating signaling among the neurons. Significantly, they found the mutant mouse shows the same exaggerated response to noise as children with the genetic disorder called "startle disease," or hyperekplexia.

The findings shed light on a nagging mystery in neurobiology: why the connections among certain types of neurons contain considerable pools of free zinc ions. And even though many studies had shown that zinc can act toxically on transmission of neural impulses, half a century of experiment researchers had not been able to show conclusively that the metal plays a role in normal nerve cell transmission.

However, in an article in the November 22, 2006, issue of the journal Neuron, published by Cell Press, Heinrich Betz and colleagues conclusively demonstrate just such a role for zinc.

In their experiments, the researchers produced mice harboring a mutant form of a gene for a receptor for zinc in neurons--thereby compromising the neurons' ability to respond to zinc. The mutation in the receptor, called the glycine receptor, targets the same receptor known to be mutated in humans with hyperekplexia. The receptor functions as a modulator of neurons in both motor and sensory signaling pathways in the brain and spinal cord.

The genetic approach used by the researchers was a more targeted technique than previous experiments in which researchers reduced overall neuronal zinc levels using chemicals called chelators that soak up zinc ions.

The resulting mutant mice showed tremors, delayed ability to right themselves when turned over, abnormal gait, altered transmission of visual signals, and an enhanced startle response to sudden noise.

Electrophysiological studies of the mutant animals' brain and spinal neurons showed significant zinc-related abnormalities in transmission of signals at the connections, called synapses, among neurons.

Betz and his colleagues wrote that "The data presented in our paper disclose a pivotal role of ambient synaptic [zinc ion] for glycinergic neurotransmission in the context of normal animal behavior." They also concluded that their results implied that manipulating synaptic zinc levels could affect the neuronal action of zinc, but that such manipulation "highlights the complexity of potential therapeutic interventions," which could cause an imbalance between the excitatory and inhibitory circuitry in the central nervous system.

In a preview of the paper in the same issue of Neuron, Alan R. Kay, Jacques Neyton, and Pierre Paoletti wrote "Undoubtedly this work is important, since it directly demonstrates that zinc acts as an endogenous modulator of synaptic transmission." They wrote that the findings "will certainly revive the flagging hopes of zincologists. This work provides a clear demonstration that interfering with zinc modulation of a synaptic pathway leads to a significant alteration in the phenotype of the animal." The three scientists added that the finding "puts a nice dent in the zinc armor, which held firm for more than 50 years."

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>