Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safer Method for Large-Scale Malaria Screening Developed

22.11.2006
New PCR Test Detects Malaria Parasite in Urine or Saliva Rather than Blood

Researchers at the Johns Hopkins Bloomberg School of Public Health’s Malaria Research Institute have developed a new test for detecting the malaria parasite in human urine and saliva. Although not a diagnostic test for determining treatment, the method could potentially reduce the need for blood sampling in epidemiological studies where large-scale malaria screening is required.

Drawing blood increases the risk of spreading HIV and other diseases, particularly in those developing countries where both HIV and malaria are prevalent. Blood drawing must also be performed by trained personnel, whereas urine and salvia sampling does not. The study was published online in the November 8, 2006, edition of Malaria Journal.

“Testing urine or saliva could be an easier and safer way to collect the information needed for studying malaria in communities. For instance, it could be used in studies to determine if a population is growing resistant to malaria drugs, which is a very serious problem,” said David J. Sullivan, MD, senior author of the study and a professor in the Bloomberg School’s Malaria Research Institute.

The test uses polymerase chain reaction (PCR), a technique for duplicating and then examining unique bits of DNA from a sample, thereby allowing DNA to be multiplied in the laboratory. The same PCR technique is used for examining malaria in blood, but has never been applied to urine and saliva samples.

The study was conducted in collaboration with colleagues at the Malaria Research Institute’s research hospital in Macha, Zambia. Urine and salvia samples were obtained from 47 volunteers with malaria and 4 without, and were then examined with the PCR method. DNA from the Plasmodium falciparum, the parasite that causes malaria, was replicated at higher levels from the saliva compared to the urine samples. However, neither method was as sensitive as that using blood samples.

“Programs for monitoring antimalarial drug and vaccine efficacy could therefore adopt such a bloodless method, while maintaining high sensitivity for clinically significant infections,” said Sungano Mharakurwa, PhD, lead author of the study and a researcher with the Malaria Research Institute in Macha.

“PCR detection of Plasmodium in human urine and saliva samples” was written by Sungano Mharakurwa, Christopher Simoloka, Philip E. Thuma, Clive Shiff and David J. Sullivan.

Funding for the research was provided by the Johns Hopkins Malaria Research Institute.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Lowe at 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>