Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast model shows promise as Alzheimer's test

21.11.2006
A century ago this month, German psychiatrist Alois Alzheimer formally described characteristics of the neurodegenerative disease which ultimately came to bear his name. While international efforts to learn about Alzheimer's disease and develop treatments have progressed significantly in recent years, a cure remains an elusive goal.

A new research tool developed by Susan Liebman, distinguished university professor of biological sciences at the University of Illinois at Chicago, may ultimately provide a means for treating the earliest stage of Alzheimer's, thereby stemming its progression.

Alzheimer's disease is characterized by the formation of plaques in the brain largely composed of fibers made from a peptide called beta-amyloid, or A-beta, for short. There is abundant evidence to support the hypothesis that accumulation of A-beta peptide triggers the appearance of Alzheimer's. But while earlier research suggested the A-beta fiber caused Alzheimer's, recent research points at much smaller aggregates of the peptide as the culprit.

"We've developed a yeast model system in which A-beta small aggregate formation can be detected," said Liebman. "The system employs a fusion of the human A-beta peptide to a functional yeast protein, called a reporter protein, which is only active in allowing cells to grow on test media if the fusion does not form aggregates."

Liebman said the yeast model system can be used to develop a high throughput assay to screen small molecules to find those that inhibit the A-beta dependent aggregation. "We'll screen a library of drugs and compounds, looking for ones that allow our yeast with the reporter protein to grow."

She said after the assay conditions are perfected, the screen will be ready for an automated process that will allow for fast testing of many compounds. Medicinal chemists would then study the structures of compounds that pass the screen and design compounds that enhance the activity without being toxic. Animal and human trials would follow.

"One promising, emerging approach for treatment of Alzheimer's disease is to prevent these smaller aggregates from forming," said Liebman. "Disruption of these small aggregates rather than the larger fibers seems prudent since inhibition of A-beta fiber formation might cause the smaller aggregate species to accumulate, and since inhibiting smaller aggregate formation should also prevent the initial formation of the fibers."

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>