Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic medicine – just over the horizon?

21.11.2006
Genetic medicine promises a revolution in health care. But major obstacles remain, not least the complexity of extrapolating clinical practice from organic molecules. But the INFOBIOMED team hopes to link biological and medical informatics in a bid to make genetic medicine a reality.

The day you are born, your birth certificate carries a detailed genetic profile showing your predisposition to allergies and certain diseases, your health risks and information useful to minimise your chances of falling sick. With all this information so early on, you and your health professional can take steps to minimise the effects of disease, before age-related illnesses begin to develop 60 years on.

In the meantime, if you do fall sick, doctors can better diagnose and tailor treatment and drugs to your exact genetic profile, with a greater chance of success. The era of genetic medicine is upon us.

Yet problems remain before the genetic revolution can move from research labs to patient benefit. The human genome is immensely complicated, and extrapolating clinical practice from genetic data is fraught with problems. Medical doctors and molecular scientists talk a different language; their expertise has a different focus and their computers can even use incompatible databases.

Which explains why one project team is working on this very problem. The partners in INFOBIOMED are attempting to link biological informatics with medical informatics, to match observed laboratory phenomena with clinical outcomes.

"Bioinformatics works mainly with data on a molecular and DNA level, while medical practice is more centred on 'higher' data levels for human organs or tissues. There's a big gulf between the two," notes project manager Carlos Diaz of Fundació IMIM in Barcelona. "We want these two information systems to develop a common ground between what happens in your DNA and what happens with disease."

INFOBIOMED has already had a huge impact since its beginnings in 2004. The doctors, scientists and IT experts involved in the project are now talking a common language and working on shared problems, something which is a major step forward.

The project also put students from different disciplines into a house together during one week, split them into teams and gave them problems to work on jointly. "It was like a scientific 'Big Brother', as all the prejudice and barriers posed by different languages and traditions were exposed", he remarks.

But that's not the most difficult problem. Some diseases can be associated in a relatively simple way with a specific genetic anomaly. But most diseases depend upon a huge variety of genes, plus many other factors – lifestyle, environment, even chance. The problem of understanding the mechanisms of disease is extremely complex.

"It is difficult to extrapolate clinical practice from genetic information, but we hope to provide a feedback loop, through the combined informatics systems – so-called 'biomedical informatics' – so that doctors and geneticists can find links between genomics and medical outcomes," notes Diaz.

Over time this will develop a picture of the relationship between the two. It could also mean that drugs are tailored specifically to individual patients, or groups of patients, with greater odds on a successful outcome.

But that is for the future. Yet INFOBIOMED has already taken some major steps toward that horizon. It has produced reports on the state-of-the-art in biomedical informatics, and developed databases and software that link both bioinformatics and medical informatics in a meaningful way.

The project partners have also developed pilot applications in four medical areas: pharmaco-informatics, genomics and infection, genomics and chronic inflammation, and genomics and hereditary colon cancer.

"Using advanced biomedical informatics approaches, the pharmaco-informatics study found a previously unsuspected bio-molecule that could play a key role in the development of the Complex Regional Pain Syndrome, a painful disorder affecting one or more extremities of the body, that ultimately can even lead to amputation. The results obtained could serve as basis for new drug treatments, and could also have a relationship with other inflammatory diseases," says Diaz. "The method followed in the research could be applied to other complex diseases as well."

INFOBIOMED ends in July 2007, but Diaz hopes they will find a way to continue the work. "We're currently looking at options – we could for example start a professional society to run a journal, with regular meetings to move biomedical informatics forward," he says.

The team is also interested to hear from companies, investors or partners who have an interest in the area. Many organisations could find the project results useful – health, pharma or informatics companies, or institutes with specialist departments in this field.

As an added bonus, in the very long term genetic medicine could mean cheap healthcare, as prevention begins to trump cure. The era of molecular genetic medicine could be just over the horizon.

Contact:
Carlos Díaz
Research Group on Biomedical Informatics (GRIB)
Fundació IMIM
Doctor Aiguader, 88
E-08003 Barcelona
Spain
Tel: +34 93 3160518 or +34 93 3160523
Email: cmdiaz@imim.es or info@infobiomed.org
Source: Based on information from INFOBIOMED

Jernett Karensen | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>