Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Better Quality Water – All Across Europe

Helmholtz Centre coordinating EU Drinking Water Research Project

Potable water is our most important nutrient. We drink it every day. That's why it is even more important to know what sort of microorganisms are in the water we drink and what diseases these can cause in humans if they occur in sufficient numbers. Scientists at the Helmholtz Centre for Infection Research in Braunschweig are now coordinating an EU project that is exploring this question.

With this "Healthy Water" project, the European Union is aiming to learn more about the quality of its water and apply this knowledge toward improving its drinking water guidelines. The project will run over a period of three years at a cost of € 2.4 million. It is financed by the European Union.

"The drinking water quality in Germany," says project coordinator, Dr. Manfred Höfle, "is outstanding." Unfortunately, this same degree of safe and potable water does not exist everywhere in Europe. That's why one key focus of the project is on high risk water sources and distribution systems. Another problem is that monitoring water resources for pathogen impurities is less than satisfactory. "We currently only determine one particular bacteria count," says Höfle," and that is E. coli. We know virtually nothing about the frequency of other bacteria, viruses, or so-called protozoa, which are single-cell animals."

Helmholtz scientists hope to test and develop further a new kind of chip they are working on with the other nine EU project partners from industry and the research community. The chip is designed to detect microorganisms that have not been empirically catalogued in the past. Dr. Höfle and his colleagues are building on their experience with the so-called "aqua-chip", which has already proved effective in detecting bacterial pathogens.

"What we now want to do is increase the number of pathogens we can detect and make the chip sensitive to viruses," explains Dr. Ingrid Brettar, one of the scientists involved in the project. This requires a great deal of sophistication because for bacteria and protozoa DNA is used as proof. Many viruses, on the other hand, store their genetic information on RNA molecules. "The chip," emphasizes Brettar, "must therefore recognize both DNA and RNA."

The new chip will be able to detect previously ignored germs in our drinking water. This ability will open up new opportunities for protecting humans from water-borne infectious diseases. "We suspect that contaminated water causes more illnesses than generally believed," says Dr. Höfle. But to find out which infectious diseases in Europe are induced by unhygienic water, the consortium of scientists involved in the EU project is not banking on the new chip alone. "We also intend to conduct a broad epidemiological study, sending questionnaires to doctors in specific parts of Europe to identify factors that could suggest a correlation between infections and unclean drinking water," Höfle explains. "So far, we do not have this kind of structured data in Europe," he notes. "We think this will give us some indication which pathogens we should pay particular attention to when developing the chip. In doing so, we hope to make a significant contribution toward improving the quality of drinking water in Europe."

Manfred Braun | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>