Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Quality Water – All Across Europe

20.11.2006
Helmholtz Centre coordinating EU Drinking Water Research Project

Potable water is our most important nutrient. We drink it every day. That's why it is even more important to know what sort of microorganisms are in the water we drink and what diseases these can cause in humans if they occur in sufficient numbers. Scientists at the Helmholtz Centre for Infection Research in Braunschweig are now coordinating an EU project that is exploring this question.

With this "Healthy Water" project, the European Union is aiming to learn more about the quality of its water and apply this knowledge toward improving its drinking water guidelines. The project will run over a period of three years at a cost of € 2.4 million. It is financed by the European Union.

"The drinking water quality in Germany," says project coordinator, Dr. Manfred Höfle, "is outstanding." Unfortunately, this same degree of safe and potable water does not exist everywhere in Europe. That's why one key focus of the project is on high risk water sources and distribution systems. Another problem is that monitoring water resources for pathogen impurities is less than satisfactory. "We currently only determine one particular bacteria count," says Höfle," and that is E. coli. We know virtually nothing about the frequency of other bacteria, viruses, or so-called protozoa, which are single-cell animals."

Helmholtz scientists hope to test and develop further a new kind of chip they are working on with the other nine EU project partners from industry and the research community. The chip is designed to detect microorganisms that have not been empirically catalogued in the past. Dr. Höfle and his colleagues are building on their experience with the so-called "aqua-chip", which has already proved effective in detecting bacterial pathogens.

"What we now want to do is increase the number of pathogens we can detect and make the chip sensitive to viruses," explains Dr. Ingrid Brettar, one of the scientists involved in the project. This requires a great deal of sophistication because for bacteria and protozoa DNA is used as proof. Many viruses, on the other hand, store their genetic information on RNA molecules. "The chip," emphasizes Brettar, "must therefore recognize both DNA and RNA."

The new chip will be able to detect previously ignored germs in our drinking water. This ability will open up new opportunities for protecting humans from water-borne infectious diseases. "We suspect that contaminated water causes more illnesses than generally believed," says Dr. Höfle. But to find out which infectious diseases in Europe are induced by unhygienic water, the consortium of scientists involved in the EU project is not banking on the new chip alone. "We also intend to conduct a broad epidemiological study, sending questionnaires to doctors in specific parts of Europe to identify factors that could suggest a correlation between infections and unclean drinking water," Höfle explains. "So far, we do not have this kind of structured data in Europe," he notes. "We think this will give us some indication which pathogens we should pay particular attention to when developing the chip. In doing so, we hope to make a significant contribution toward improving the quality of drinking water in Europe."

Manfred Braun | alfa
Further information:
http://www.gbf.de

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>