Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Movies reveal that the process of insulating nerves is surprisingly dynamic

17.11.2006
Much like the electrical wiring in your house, the nerves in your body need to be completely covered by a layer of insulation to work properly.

Instead of red, white or black plastic, however, the wiring in the nervous system is protected by layers of an insulating protein called myelin. These layers increase the speed that nerve impulses travel throughout the brain and the body. The critical role they play is dramatically illustrated by the symptoms of multiple sclerosis, which is caused by lesions that destroy myelin. These include blindness, muscle weakness and paralysis, loss of coordination, stuttering, pain and burning sensations, impotence, memory loss, depression and dementia.

The formation of myelin sheaths during development requires a complex choreography generally considered to be one of nature’s most spectacular examples of the interaction between different kinds of cells. Now, a group of Vanderbilt researchers has successfully produced movies that provide the first direct view of the initial stage of this process. That’s the period when the cells that ultimately produce the myelin sheathing spread throughout the developing nervous system. The results were published online in the journal Nature Neuroscience on Nov. 12 and should aid in the design of new therapies to promote the repair of this protective layer following disease or injury.

“We discovered that this process is far more dynamic than anyone had dreamed,” says Bruce Appel, the associate professor of biological sciences and Kennedy Center investigator who headed up the study.

In the central nervous system, the myelin membranes are produced by cells called oligodendrocytes. These cells must be distributed uniformly along axons – the long, wire-like extensions from neurons that carry nerve impulses – so that the membranes, which wrap the nerve fibers like millions of microscopic pieces of electrician’s tape, can cover the axons completely and uniformly. The wrapping process takes place near the end of fetal development and actually continues for some time after birth.

In order to study this process, Appel and his research group – graduate students Brandon Kirby and Jimann Shin along with post doctoral fellows Norio Takada and Andrew Latimer – created a transgenic zebrafish which incorporates fluorescent proteins in the cells involved in myelination. The zebrafish is a small tropical fish that has become a popular species for studying the process of development in vertebrates (animals with backbones). Because zebrafish embryos are transparent and develop within a few days, they allow biologists to watch developmental processes as they take place: something they cannot do with mice or other mammals. These characteristics allowed the Vanderbilt researchers to obtain images of the cells involved in myelination using a confocal microscope and edit them into time-lapse movies.

The oligodendrocytes that produce the myelin membranes arise from mobile, dividing cells called “oligodentrocyte progenitor cells” or OPCs. OPCs are made in special locations in the brain and spinal cord. These cells seek out axons and spread out along them. Then, at a certain point, a fraction of the OPCs transform themselves into oligodentrocytes and begin wrapping axons. Each cell can wrap portions of several different axons and each axon is wrapped by a large number of oligodentrocytes.

Before the Vanderbilt study, there were a number of different theories about how OPCs space themselves along axons. One was that the axons themselves produce some kind of positional cues that the OPCs follow. Another was that the OPCs sense each other and adjust their position accordingly: a mechanism somewhat similar to that which soldiers on the parade ground use to align a formation by extending their right arm and adjusting their position until their outstretched fingers touch the shoulder of the person on the right.

Previous studies of OPCs grown in tissue culture had seen that they could generate small pseudopods, called filopodia, but no one knew what their purpose might be. So, when the researchers began viewing their movies, they were excited to observe that the cells were continually sending out filopodia in different directions. They found that OPCs not only generate these tiny tentacles, but keep them extending and contracting in a fashion reminiscent of the party noise-makers called blow-outs that unroll when you blow on them and snap back when you stop. They observed that when one of these tiny tentacles touches a neighboring OPC, the cells react by moving in the opposite direction. This caused a surprising amount of movement as the OPCs repeatedly readjusted their positions.

“This could serve as a surveillance mechanism that allows the OPCs to determine the presence or absence of nearby cells of the same type,” says Appel, “and could explain how they distribute themselves along the axons.”

The researchers used the same system to see how the OPCs respond to injuries and conditions like multiple sclerosis. They did so by using a laser to destroy the OPCs along a short length of the embryo’s spine a day before the axon-wrapping stage begins. They found that the OPCs in the vicinity of the gap start dividing to produce additional cells that move into the gap. After a day, the number of OPCs in the gap had grown to 50 percent of normal and after four days it had risen to 70 percent.

“Now that we have a better understanding of OPC and oligodendrocyte behaviors, we are in a much better position to identify and study the genes that are necessary for myelination,” says Appel, “and having these genes in hand should aid in the design of drugs to promote remyelination following disease or injury.”

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>