Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Movies reveal that the process of insulating nerves is surprisingly dynamic

Much like the electrical wiring in your house, the nerves in your body need to be completely covered by a layer of insulation to work properly.

Instead of red, white or black plastic, however, the wiring in the nervous system is protected by layers of an insulating protein called myelin. These layers increase the speed that nerve impulses travel throughout the brain and the body. The critical role they play is dramatically illustrated by the symptoms of multiple sclerosis, which is caused by lesions that destroy myelin. These include blindness, muscle weakness and paralysis, loss of coordination, stuttering, pain and burning sensations, impotence, memory loss, depression and dementia.

The formation of myelin sheaths during development requires a complex choreography generally considered to be one of nature’s most spectacular examples of the interaction between different kinds of cells. Now, a group of Vanderbilt researchers has successfully produced movies that provide the first direct view of the initial stage of this process. That’s the period when the cells that ultimately produce the myelin sheathing spread throughout the developing nervous system. The results were published online in the journal Nature Neuroscience on Nov. 12 and should aid in the design of new therapies to promote the repair of this protective layer following disease or injury.

“We discovered that this process is far more dynamic than anyone had dreamed,” says Bruce Appel, the associate professor of biological sciences and Kennedy Center investigator who headed up the study.

In the central nervous system, the myelin membranes are produced by cells called oligodendrocytes. These cells must be distributed uniformly along axons – the long, wire-like extensions from neurons that carry nerve impulses – so that the membranes, which wrap the nerve fibers like millions of microscopic pieces of electrician’s tape, can cover the axons completely and uniformly. The wrapping process takes place near the end of fetal development and actually continues for some time after birth.

In order to study this process, Appel and his research group – graduate students Brandon Kirby and Jimann Shin along with post doctoral fellows Norio Takada and Andrew Latimer – created a transgenic zebrafish which incorporates fluorescent proteins in the cells involved in myelination. The zebrafish is a small tropical fish that has become a popular species for studying the process of development in vertebrates (animals with backbones). Because zebrafish embryos are transparent and develop within a few days, they allow biologists to watch developmental processes as they take place: something they cannot do with mice or other mammals. These characteristics allowed the Vanderbilt researchers to obtain images of the cells involved in myelination using a confocal microscope and edit them into time-lapse movies.

The oligodendrocytes that produce the myelin membranes arise from mobile, dividing cells called “oligodentrocyte progenitor cells” or OPCs. OPCs are made in special locations in the brain and spinal cord. These cells seek out axons and spread out along them. Then, at a certain point, a fraction of the OPCs transform themselves into oligodentrocytes and begin wrapping axons. Each cell can wrap portions of several different axons and each axon is wrapped by a large number of oligodentrocytes.

Before the Vanderbilt study, there were a number of different theories about how OPCs space themselves along axons. One was that the axons themselves produce some kind of positional cues that the OPCs follow. Another was that the OPCs sense each other and adjust their position accordingly: a mechanism somewhat similar to that which soldiers on the parade ground use to align a formation by extending their right arm and adjusting their position until their outstretched fingers touch the shoulder of the person on the right.

Previous studies of OPCs grown in tissue culture had seen that they could generate small pseudopods, called filopodia, but no one knew what their purpose might be. So, when the researchers began viewing their movies, they were excited to observe that the cells were continually sending out filopodia in different directions. They found that OPCs not only generate these tiny tentacles, but keep them extending and contracting in a fashion reminiscent of the party noise-makers called blow-outs that unroll when you blow on them and snap back when you stop. They observed that when one of these tiny tentacles touches a neighboring OPC, the cells react by moving in the opposite direction. This caused a surprising amount of movement as the OPCs repeatedly readjusted their positions.

“This could serve as a surveillance mechanism that allows the OPCs to determine the presence or absence of nearby cells of the same type,” says Appel, “and could explain how they distribute themselves along the axons.”

The researchers used the same system to see how the OPCs respond to injuries and conditions like multiple sclerosis. They did so by using a laser to destroy the OPCs along a short length of the embryo’s spine a day before the axon-wrapping stage begins. They found that the OPCs in the vicinity of the gap start dividing to produce additional cells that move into the gap. After a day, the number of OPCs in the gap had grown to 50 percent of normal and after four days it had risen to 70 percent.

“Now that we have a better understanding of OPC and oligodendrocyte behaviors, we are in a much better position to identify and study the genes that are necessary for myelination,” says Appel, “and having these genes in hand should aid in the design of drugs to promote remyelination following disease or injury.”

David F. Salisbury | Vanderbilt University
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>