Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment finds success treating tiniest lung tumors

10.11.2006
Study shows long survival for people with advanced disease

Patients with metastatic cancer tumors in their lungs are much more likely to live disease-free if they have an experimental treatment involving shaped-beam radiosurgery rather that conventional treatment, according to a University of Rochester Medical Center study.

The research, presented this week at the American Society of Therapeutic Radiology and Oncology conference in Philadelphia, offers a new option for the tens of thousands of patients annually who must cope with cancer that has spread to their lungs. Usually when the disease advances to that stage, the average survival time is 12 months and treatments are limited. In this study, some patients who were treated more than three years ago still have not had the disease spread.

Shaped-beam, radiosurgery technology was originally designed for destroying brain tumors. Rochester oncologists are expanding its use to other parts of the body, studying whether it can be used to destroy other soft-tissue tumors that were previously considered untreatable. This includes tumors in the liver, adrenal glands and spine.

Last year Paul Okunieff, M.D., and colleague Alan Katz, M.D., reported using the technology to achieve an 88 percent control rate for metastatic tumors in the liver, a result that was considered highly unlikely as recently as five years ago.

The current study was funded in part by BrainLab, the maker of the Novalis radiosurgery system. In the study of 50 patients, 91 percent of the lung tumors treated between February 2001 and December 2005 never progressed, and about 25 percent of patients appear to be disease-free after three years of follow-up.

Doctors hope that shaped-beam radiosurgery and chemotherapy might form a "synergistic combination that allows the drugs to destroy the microscopic cells that imaging studies can't see while the radiation therapy controls the tumors we can see," said Okunieff, chair of Radiation Oncology at the Medical Center's James P. Wilmot Cancer Center.

Perhaps most importantly, this high-dose, focused radiation targets the tumor with very limited damage to healthy tissue that surrounds the lesion, and patients experience minimal side effects even when a large number of tumors are treated, Okunieff said.

"We're getting better and better at finding smaller and smaller tumors that we can irradiate easily, and people are living longer," Okunieff said.

Advances in CT imaging technology are allowing doctors to detect lung cancers earlier, generally improving a person's chance for survival. The new imaging techniques combined with other technologies like Novalis are making it possible for physicians to offer treatments that a few years ago were considered impossible.

"We are now in the process of determining the circumstances in which these new technologies can benefit patients. We seem to have hit on some important ones,' Okunieff said.

Okunieff's current study focused on patients with multiple lung lesions ranging in size from 3 millimeters to 7.7 centimeters between February 2001 and December 2005. Doctors treated 31 people with fewer than five tumors curatively and 19 others with more than five lesions palliatively to slow the disease. These patients had undergone multiple previous therapies for their metastatic disease prior to radiosurgery.

Three years after follow-up, of the 125 lesions treated, 36 lesions (29 percent) disappeared completely, 32 lesions (26 percent) had shrunk, and 49 (39 percent) were stable after treatment. Only eight of the 125 lesions (6 percent) grew larger after the radiosurgery.

"If we can kill the spots that we can see, and they are the most life-threatening, we can help people live longer," Okunieff said. "And when you deliver a one-two punch with chemotherapy to destroy the cancer cells we can't yet see, we dare to consider the potential of controlling metastatic disease comprehensively."

Leslie White | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Could a particle accelerator using laser-driven implosion become a reality?

24.05.2018 | Physics and Astronomy

Hot cars can hit deadly temperatures in as little as one hour

24.05.2018 | Health and Medicine

Complementing conventional antibiotics

24.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>