Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment finds success treating tiniest lung tumors

10.11.2006
Study shows long survival for people with advanced disease

Patients with metastatic cancer tumors in their lungs are much more likely to live disease-free if they have an experimental treatment involving shaped-beam radiosurgery rather that conventional treatment, according to a University of Rochester Medical Center study.

The research, presented this week at the American Society of Therapeutic Radiology and Oncology conference in Philadelphia, offers a new option for the tens of thousands of patients annually who must cope with cancer that has spread to their lungs. Usually when the disease advances to that stage, the average survival time is 12 months and treatments are limited. In this study, some patients who were treated more than three years ago still have not had the disease spread.

Shaped-beam, radiosurgery technology was originally designed for destroying brain tumors. Rochester oncologists are expanding its use to other parts of the body, studying whether it can be used to destroy other soft-tissue tumors that were previously considered untreatable. This includes tumors in the liver, adrenal glands and spine.

Last year Paul Okunieff, M.D., and colleague Alan Katz, M.D., reported using the technology to achieve an 88 percent control rate for metastatic tumors in the liver, a result that was considered highly unlikely as recently as five years ago.

The current study was funded in part by BrainLab, the maker of the Novalis radiosurgery system. In the study of 50 patients, 91 percent of the lung tumors treated between February 2001 and December 2005 never progressed, and about 25 percent of patients appear to be disease-free after three years of follow-up.

Doctors hope that shaped-beam radiosurgery and chemotherapy might form a "synergistic combination that allows the drugs to destroy the microscopic cells that imaging studies can't see while the radiation therapy controls the tumors we can see," said Okunieff, chair of Radiation Oncology at the Medical Center's James P. Wilmot Cancer Center.

Perhaps most importantly, this high-dose, focused radiation targets the tumor with very limited damage to healthy tissue that surrounds the lesion, and patients experience minimal side effects even when a large number of tumors are treated, Okunieff said.

"We're getting better and better at finding smaller and smaller tumors that we can irradiate easily, and people are living longer," Okunieff said.

Advances in CT imaging technology are allowing doctors to detect lung cancers earlier, generally improving a person's chance for survival. The new imaging techniques combined with other technologies like Novalis are making it possible for physicians to offer treatments that a few years ago were considered impossible.

"We are now in the process of determining the circumstances in which these new technologies can benefit patients. We seem to have hit on some important ones,' Okunieff said.

Okunieff's current study focused on patients with multiple lung lesions ranging in size from 3 millimeters to 7.7 centimeters between February 2001 and December 2005. Doctors treated 31 people with fewer than five tumors curatively and 19 others with more than five lesions palliatively to slow the disease. These patients had undergone multiple previous therapies for their metastatic disease prior to radiosurgery.

Three years after follow-up, of the 125 lesions treated, 36 lesions (29 percent) disappeared completely, 32 lesions (26 percent) had shrunk, and 49 (39 percent) were stable after treatment. Only eight of the 125 lesions (6 percent) grew larger after the radiosurgery.

"If we can kill the spots that we can see, and they are the most life-threatening, we can help people live longer," Okunieff said. "And when you deliver a one-two punch with chemotherapy to destroy the cancer cells we can't yet see, we dare to consider the potential of controlling metastatic disease comprehensively."

Leslie White | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>