Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment finds success treating tiniest lung tumors

10.11.2006
Study shows long survival for people with advanced disease

Patients with metastatic cancer tumors in their lungs are much more likely to live disease-free if they have an experimental treatment involving shaped-beam radiosurgery rather that conventional treatment, according to a University of Rochester Medical Center study.

The research, presented this week at the American Society of Therapeutic Radiology and Oncology conference in Philadelphia, offers a new option for the tens of thousands of patients annually who must cope with cancer that has spread to their lungs. Usually when the disease advances to that stage, the average survival time is 12 months and treatments are limited. In this study, some patients who were treated more than three years ago still have not had the disease spread.

Shaped-beam, radiosurgery technology was originally designed for destroying brain tumors. Rochester oncologists are expanding its use to other parts of the body, studying whether it can be used to destroy other soft-tissue tumors that were previously considered untreatable. This includes tumors in the liver, adrenal glands and spine.

Last year Paul Okunieff, M.D., and colleague Alan Katz, M.D., reported using the technology to achieve an 88 percent control rate for metastatic tumors in the liver, a result that was considered highly unlikely as recently as five years ago.

The current study was funded in part by BrainLab, the maker of the Novalis radiosurgery system. In the study of 50 patients, 91 percent of the lung tumors treated between February 2001 and December 2005 never progressed, and about 25 percent of patients appear to be disease-free after three years of follow-up.

Doctors hope that shaped-beam radiosurgery and chemotherapy might form a "synergistic combination that allows the drugs to destroy the microscopic cells that imaging studies can't see while the radiation therapy controls the tumors we can see," said Okunieff, chair of Radiation Oncology at the Medical Center's James P. Wilmot Cancer Center.

Perhaps most importantly, this high-dose, focused radiation targets the tumor with very limited damage to healthy tissue that surrounds the lesion, and patients experience minimal side effects even when a large number of tumors are treated, Okunieff said.

"We're getting better and better at finding smaller and smaller tumors that we can irradiate easily, and people are living longer," Okunieff said.

Advances in CT imaging technology are allowing doctors to detect lung cancers earlier, generally improving a person's chance for survival. The new imaging techniques combined with other technologies like Novalis are making it possible for physicians to offer treatments that a few years ago were considered impossible.

"We are now in the process of determining the circumstances in which these new technologies can benefit patients. We seem to have hit on some important ones,' Okunieff said.

Okunieff's current study focused on patients with multiple lung lesions ranging in size from 3 millimeters to 7.7 centimeters between February 2001 and December 2005. Doctors treated 31 people with fewer than five tumors curatively and 19 others with more than five lesions palliatively to slow the disease. These patients had undergone multiple previous therapies for their metastatic disease prior to radiosurgery.

Three years after follow-up, of the 125 lesions treated, 36 lesions (29 percent) disappeared completely, 32 lesions (26 percent) had shrunk, and 49 (39 percent) were stable after treatment. Only eight of the 125 lesions (6 percent) grew larger after the radiosurgery.

"If we can kill the spots that we can see, and they are the most life-threatening, we can help people live longer," Okunieff said. "And when you deliver a one-two punch with chemotherapy to destroy the cancer cells we can't yet see, we dare to consider the potential of controlling metastatic disease comprehensively."

Leslie White | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>