Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Novel Method for Treatment of Sickle Cell Disease

09.11.2006
Virginia Commonwealth University researchers have developed a unique anti-sickling agent that may one day be effective in treating sickle cell disease, a painful and debilitating genetic blood disorder that affects approximately 80,000 Americans.

The research team led by Donald Abraham, Ph.D., the Alfred and Frances Burger Professor of Biological and Medicinal Chemistry, in the Department of Medicinal Chemistry in VCU's School of Pharmacy, has shown that 5-HMF, a pure compound developed by the team, has a high affinity for sickle cell hemoglobin and holds promise for the treatment of sickle cell disease.

"Our findings suggest that this anti-sickling agent may lead to new drug treatments and may one day help those suffering with sickle cell disease. This molecule, 5-HMF, is the most promising molecule to treat sickle cell anemia to come from our research group in more than 30 years," said Abraham, who is also the director of the Institute of Structural Biology and Drug Discovery.

The United States Patent and Trademark Office recently issued VCU a Notice of Allowance for a patent relating to a method of treating sickle cell disease with 5-HMF compound. A Notice of Allowance is a written notification that a patent application has cleared an internal review and it has been approved for issuance.

Sickle cell disease is caused by an abnormality in the hemoglobin molecule. Normal red blood cells carrying hemoglobin are smooth, round and flexible and can travel easily throughout blood vessels. However, sickle cells are stiff, abnormally shaped, red blood cells that do not flow freely through blood vessels. The sickle cells also may clot together causing a blockage to form which results in pain and potentially dangerous complications that can compromise a patient's organs.

According to Abraham, the 5-membered, heterocyclic, anti-sickling agent binds to hemoglobin to increase the oxygen affinity of both normal and sickle hemoglobin. In a patient with sickle cell disease, the binding action of 5-HMF would allow sickle cells to move more smoothly throughout the blood vessels of the body and prevent blockages from forming.

Abraham is internationally known for his groundbreaking work discovering and developing drugs that interact with hemoglobin. His research focus is to develop targeted therapeutics in sickle cell anemia, cardiovascular disease, stroke, cancer, Alzheimer's disease and radiation oncology.

This research was supported in part by a grant from the National Institutes of Health.

Xechem International, Inc., a biopharmaceutical company headquartered in New Brunswick, N.J., has entered into a licensing agreement with VCU Technology Transfer and has the exclusive worldwide rights for the production, sales and marketing of 5-HMF for use to fight sickle cell disease.

A recent grant from the National Heart, Lung and Blood Institute, part of the National Institutes of Health, awarded to Xechem International Inc., will allow researchers to carry out toxicity studies on 5-HMF. The research team will include researchers from VCU and Children's Hospital of Philadelphia, University of Philadelphia.

Working with Abraham to develop the anti-sickling agent were: Martin K. Safo, Ph.D., Richmond Danso-Danquah, Ph.D., and Gajanan S. Joshi, Ph.D., all researchers in the VCU Department of Medicinal Chemistry.

About Xechem: Xechem International is a development stage biopharmaceutical company working on Sickle Cell Disease (SCD), antimalarials, and antiviral (including AIDS), anticancer, antifungal and antibacterial products from natural sources, including microbial and marine organisms. Its focus is on the development of phyto-pharmaceuticals (Natural Herbal Drugs) and other proprietary technologies, including those used in the treatment of orphan diseases. Xechem’s mission is to bring relief to the millions of people who suffer from these diseases. Its recent focus and resources have been directed primarily toward the development and launch of NICOSAN™ (named HEMOXIN™ in the US and Europe) for the prophylactic management of Sickle Cell Disease (SCD). With the recent Nigerian regulatory approval of NICOSAN™, Xechem is now scaling-up the commercialization of the drug in Nigeria and making preparations for the pursuit of US FDA and European regulatory approval.

About VCU and the VCU Medical Center:

Virginia Commonwealth University is the largest university in Virginia and ranks among the top 100 universities in the country in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 30,000 students in nearly 200 certificate and degree programs in the arts, sciences and humanities. Sixty-three of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>