Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New way of tracking muscle damage from radiation

08.11.2006
St. Jude team shows magnetic resonance imaging (MRI) holds promise for predicting long-term damage to children's muscles, enabling doctors to better avoid it

Magnetic resonance imaging (MRI) could become a valuable tool for predicting the risk of muscle injury during and following radiation therapy, according to investigators at St. Jude Children's Research Hospital.

The researchers report that MRI can spot the immediate injury done by radiation therapy to the muscles of children undergoing radiation treatment for certain types of soft-tissue cancer. This also indicates that MRI might one day be able to help doctors predict the amount of long-term damage that radiation may cause. A report on these findings appears in the Oct. 25 online issue of Magnetic Resonance Imaging.

The study's findings are significant because as radiation treatments become more advanced and complex, clinicians must have a way to predict the outcomes--including side effects--on specific patients, according to Matthew Krasin, M.D., associate member of the St. Jude Department of Radiological Sciences.

The St. Jude study showed that changes in images taken of muscles before and after radiation therapy for soft tissue sarcoma and Ewing sarcoma are related not only to the amount of radiation the child received, but also to the child's age and the presence of a nearby tumor.

"We hope that detecting these changes at such an early stage may help clinicians predict which patients need an intervention to prevent late damage," Krasin said. Soft tissue sarcomas are cancers that arise in muscles, fat, blood vessels and other soft tissues. Ewing sarcoma is a cancer that arises in the bone or soft tissue, usually in the arms, legs, pelvis or chest wall.

St. Jude researchers studied the muscles of 13 patients before, during and 12 weeks after they received radiation therapy for soft tissue sarcoma. The team used a technique called quantitative T2 to determine the extent of swelling in tissues before, during and after radiation therapy; and a technique called dynamic enhanced magnetic resonance imaging (DEMRI) to study what happens to the blood supply at a microscopic level.

"These techniques are powerful, non-surgical ways to look into the body and study the microscopic and biochemical changes that are occurring in each patient after radiation therapy," Krasin said.

The team made 60 images of the same area, including a dynamic view of what was happening in the muscles during a six-minute period following infusion of gadolinium, a contrast agent.

"The rate at which the contrast agent flows in and out of a region, or whether it leaks out of the blood vessel, helps us understand whether the blood supply is in poor or good condition," Krasin said. "Changes in T2 measurements may indicate an increase in swelling following radiation therapy, which is evidence of inflammation that could be treated."

The researchers believe that the early changes they see in muscle, such as swelling and leakage, might help them predict how much damage will occur in the muscles during the course of many months. By better understanding what causes these changes, clinicians will then be able to design better radiation treatments to avoid potential problems or treat the injury at an earlier stage, Krasin said.

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Researchers show p300 protein may suppress leukemia in MDS patients
28.03.2017 | University of Miami Miller School of Medicine

nachricht When writing interferes with hearing
28.03.2017 | Université de Genève

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>