Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New way of tracking muscle damage from radiation

08.11.2006
St. Jude team shows magnetic resonance imaging (MRI) holds promise for predicting long-term damage to children's muscles, enabling doctors to better avoid it

Magnetic resonance imaging (MRI) could become a valuable tool for predicting the risk of muscle injury during and following radiation therapy, according to investigators at St. Jude Children's Research Hospital.

The researchers report that MRI can spot the immediate injury done by radiation therapy to the muscles of children undergoing radiation treatment for certain types of soft-tissue cancer. This also indicates that MRI might one day be able to help doctors predict the amount of long-term damage that radiation may cause. A report on these findings appears in the Oct. 25 online issue of Magnetic Resonance Imaging.

The study's findings are significant because as radiation treatments become more advanced and complex, clinicians must have a way to predict the outcomes--including side effects--on specific patients, according to Matthew Krasin, M.D., associate member of the St. Jude Department of Radiological Sciences.

The St. Jude study showed that changes in images taken of muscles before and after radiation therapy for soft tissue sarcoma and Ewing sarcoma are related not only to the amount of radiation the child received, but also to the child's age and the presence of a nearby tumor.

"We hope that detecting these changes at such an early stage may help clinicians predict which patients need an intervention to prevent late damage," Krasin said. Soft tissue sarcomas are cancers that arise in muscles, fat, blood vessels and other soft tissues. Ewing sarcoma is a cancer that arises in the bone or soft tissue, usually in the arms, legs, pelvis or chest wall.

St. Jude researchers studied the muscles of 13 patients before, during and 12 weeks after they received radiation therapy for soft tissue sarcoma. The team used a technique called quantitative T2 to determine the extent of swelling in tissues before, during and after radiation therapy; and a technique called dynamic enhanced magnetic resonance imaging (DEMRI) to study what happens to the blood supply at a microscopic level.

"These techniques are powerful, non-surgical ways to look into the body and study the microscopic and biochemical changes that are occurring in each patient after radiation therapy," Krasin said.

The team made 60 images of the same area, including a dynamic view of what was happening in the muscles during a six-minute period following infusion of gadolinium, a contrast agent.

"The rate at which the contrast agent flows in and out of a region, or whether it leaks out of the blood vessel, helps us understand whether the blood supply is in poor or good condition," Krasin said. "Changes in T2 measurements may indicate an increase in swelling following radiation therapy, which is evidence of inflammation that could be treated."

The researchers believe that the early changes they see in muscle, such as swelling and leakage, might help them predict how much damage will occur in the muscles during the course of many months. By better understanding what causes these changes, clinicians will then be able to design better radiation treatments to avoid potential problems or treat the injury at an earlier stage, Krasin said.

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>