Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New radiation technique can greatly reduce painful skin burns in women with breast cancer

08.11.2006
Breast cancer patients who undergo a new radiation technique called intensity modulated radiation therapy (IMRT) after surgery are three times less likely to have severe skin reactions from the treatment compared to standard radiation therapy, according to a study presented at the plenary session November 6, 2006, at the American Society for Therapeutic Radiology and Oncology's 48th Annual Meeting in Philadelphia. The study is the first of its kind to show how recent dramatic improvements in radiation treatments directly benefit patients.

"Using IMRT, we are able to dramatically reduce the painful side effects of radiation, thereby improving the patient's quality of life," said Jean-Philippe Pignol, M.D., Ph.D., lead author of the study and a radiation oncologist at Sunnybrook Health Sciences Centre in Toronto, Canada. "Patients should be aware that breast IMRT has fewer side effects than standard radiation therapy and is now widely available."

The current standard of care for breast cancer is surgical removal of the cancer, followed by radiation to the breast to kill any remaining cells. The standard radiation technique uses two opposite radiation beams on the whole breast to target the cancer and can cause excess amounts of radiation to certain areas of the breast, increasing the risk of the patient developing sensitive, red, weepy skin that may blister and peel. The majority (80 percent) of severe skin burns occur on the breast crease, located between the bottom of the breast and the chest wall.

Using IMRT, however, radiation oncologists are able to control the intensity of each beam to better spare nearby healthy tissue, thereby minimizing the risk of too much radiation on a part of the breast and severe skin reactions. The treatment was able to significantly reduce this occurrence in women with large breasts, who are more likely to have severe skin reactions.

In this study, 358 patients were randomly assigned to receive either the standard breast radiation treatment or breast IMRT and were observed during and for six weeks after treatment.

Beth Bukata | EurekAlert!
Further information:
http://www.rtanswers.org
http://www.astro.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>