Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Prostate cancer less likely to spread when treated with higher dose of radiation

New research suggests that men with prostate cancer who choose radiation therapy should seek treatment centers that will offer high-dose radiation.

A new study from Fox Chase Cancer Center finds that higher doses of 74 to 82 Gray (Gy) greatly reduce the risk that the cancer will spread later--even 8-10 years after treatment. The results of the study were presented today at the 48th Annual Meeting of the American Society for Therapeutic Radiology and Oncology in Philadelphia.

"There is a comprehensive body of evidence demonstrating that prostate cancer treated with higher doses of radiation is less likely to grow back in the prostate or cause a rising PSA, and now, we know it is also less likely to spread later to other parts of the body," explained Peter Morgan, M.D., a resident in the Radiation Oncology Department at Fox Chase Cancer Center.

Generally, treatment centers that offer 3D conformal radiation therapy or a newer system of radiation delivery called IMRT (intensity modulated radiation therapy) treat men with the higher levels of radiation shown in this study to prevent the cancer's spread.

Morgan said that no published data from prospective randomized trials have shown a significant reduction in distant metastasis with higher radiation dose, likely because patients have not been followed for long enough to see the reduced of late-wave of metastasis. The current study shows that the risk of cancer spreading 8-10 years after treatment is lower when doses >74 Gray of radiation are given.

When asked how more radiation to the prostate protects the rest of the body from the cancer, Dr. Morgan replied, "That's what is so important about this work. We believe that the late wave of distant metastasis is due to the persistence of cancer in the prostate itself, which subsequently seeds tumor cells to other parts of the body. Because higher dose radiation more effectively kills cancer in the prostate, the source for future metastases is eliminated."

From 1989 to 1999, 667 men with intermediate- to high-risk prostate cancer were treated consecutively with 3D conformal radiation therapy. The outcomes of men who received less than 74 Gy, 74-75.9 Gy and greater than 76 Gy were compared. These groups had a median follow-up of 84, 84 and 65 months, respectively. The 10-year rate of the cancer spreading outside of the prostate (distant metastasis) was 16 percent for radiation doses less than 74 Gy, 7 percent for 74-75.9 Gy, and 3 percent for greater than 76 Gy.

Morgan said, "At our institution the policy for several years has been to treat prostate cancer to a dose of 76 to 80 Gy using IMRT. This study confirms that we are doing the right thing."

Karen Mallet | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>