Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted Irradiation: A New Weapon Against HIV?

07.11.2006
Antiretroviral therapy can keep HIV infection in check and delay and ameliorate the symptoms of HIV/AIDS. However, the drugs do not manage to eradicate the virus completely; individuals have to stay on the drugs permanently.

Preclinical studies in mice by Ekatarina Dadachova and colleagues (Albert Einstein College of Medicine) published in the international open-access journal PLoS Medicine now suggest a new strategy to locate and kill many if not all HIV-infected cells in the body.

Radioimmunotherapy refers to an approach pioneered by cancer researchers in which patients are injected with antibodies against specific molecules characteristic of cancer cells (or in this case, HIV-infected cells) which carry a radioactive isotope. The approach takes advantage of the antibody’s ability to rapidly hone in on its target cells and deliver the radioactive payload which then selectively kills the target cells and any HIV particles within it.

The study included some test-tube experiments on HIV infected human white blood cells as well as experiments on HIV infected mice that were injected with the radioactive antibodies. The researchers found that HIV infected white blood cells were successfully killed by radioactive antibodies that had been developed against specific proteins in the HIV particle that are routinely displayed at the surface of infected cells.

Two different types of antibodies and two different types of radioactive payload were tried. Both antibodies were very effective in targeting HIV infected cells, but one type of radioactive tag (213-Bismuth) was more efficient in killing the HIV-infected target cells than the other (188-Rhenium).

Then, mice were infected with HIV and treated with the radioactive antibodies (these particular mice had a deficient immune system, which means that they can be infected with the HIV virus that normally does not infect mice). The number of HIV infected cells was reduced in the treated mice compared with control animals, which were treated with antibodies not joined to a radioactive tag. The greater the antibody dose, the greater the proportion of HIV infected cells that were killed.

To assess ‘collateral damage’ the researchers examined whether the treatment with the radioactive antibodies damaged the red blood cells in the infected mice. They saw a drop in red blood cell numbers only for the mice receiving the highest dose of antibodies, suggesting that there is dose at which the antibodies are efficient and selective at killing their specific target cells.

These results provide initial support for the idea that radioimmunotherapy could work against HIV/AIDS and are encouraging for two reasons: First, because HIV is a formidable opponent and patients and doctors need as many different strategies as possible to help patients control the disease. And second, because they hint at the possibility of eradicating HIV completely, something that Dadachova and colleagues speculate would have the best chance of working at the early stage of infection right after someone is exposed to the virus.

Citation: Dadachova E, Patel MC, Toussi S, Apostolidis C, Morgenstern A, et al. (2006) Targeted killing of virally infected cells by radiolabeled antibodies to viral proteins. PLoS Med 3(11): e427.

Andrew Hyde | alfa
Further information:
http://dx.doi.org/10.1371/journal.pmed.0030427
http://www.plosmedicine.org/

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>