Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted Irradiation: A New Weapon Against HIV?

07.11.2006
Antiretroviral therapy can keep HIV infection in check and delay and ameliorate the symptoms of HIV/AIDS. However, the drugs do not manage to eradicate the virus completely; individuals have to stay on the drugs permanently.

Preclinical studies in mice by Ekatarina Dadachova and colleagues (Albert Einstein College of Medicine) published in the international open-access journal PLoS Medicine now suggest a new strategy to locate and kill many if not all HIV-infected cells in the body.

Radioimmunotherapy refers to an approach pioneered by cancer researchers in which patients are injected with antibodies against specific molecules characteristic of cancer cells (or in this case, HIV-infected cells) which carry a radioactive isotope. The approach takes advantage of the antibody’s ability to rapidly hone in on its target cells and deliver the radioactive payload which then selectively kills the target cells and any HIV particles within it.

The study included some test-tube experiments on HIV infected human white blood cells as well as experiments on HIV infected mice that were injected with the radioactive antibodies. The researchers found that HIV infected white blood cells were successfully killed by radioactive antibodies that had been developed against specific proteins in the HIV particle that are routinely displayed at the surface of infected cells.

Two different types of antibodies and two different types of radioactive payload were tried. Both antibodies were very effective in targeting HIV infected cells, but one type of radioactive tag (213-Bismuth) was more efficient in killing the HIV-infected target cells than the other (188-Rhenium).

Then, mice were infected with HIV and treated with the radioactive antibodies (these particular mice had a deficient immune system, which means that they can be infected with the HIV virus that normally does not infect mice). The number of HIV infected cells was reduced in the treated mice compared with control animals, which were treated with antibodies not joined to a radioactive tag. The greater the antibody dose, the greater the proportion of HIV infected cells that were killed.

To assess ‘collateral damage’ the researchers examined whether the treatment with the radioactive antibodies damaged the red blood cells in the infected mice. They saw a drop in red blood cell numbers only for the mice receiving the highest dose of antibodies, suggesting that there is dose at which the antibodies are efficient and selective at killing their specific target cells.

These results provide initial support for the idea that radioimmunotherapy could work against HIV/AIDS and are encouraging for two reasons: First, because HIV is a formidable opponent and patients and doctors need as many different strategies as possible to help patients control the disease. And second, because they hint at the possibility of eradicating HIV completely, something that Dadachova and colleagues speculate would have the best chance of working at the early stage of infection right after someone is exposed to the virus.

Citation: Dadachova E, Patel MC, Toussi S, Apostolidis C, Morgenstern A, et al. (2006) Targeted killing of virally infected cells by radiolabeled antibodies to viral proteins. PLoS Med 3(11): e427.

Andrew Hyde | alfa
Further information:
http://dx.doi.org/10.1371/journal.pmed.0030427
http://www.plosmedicine.org/

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>