Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use magnetic attraction to improve stents, reduce blood clot risk

03.11.2006
Mayo Clinic heart researchers have devised a new strategy to improve the effectiveness and safety of heart stents, which are used to open narrowed blood vessels and have been the recent subject of clotting concerns. Their novel approach is based on magnetizing healing cells from the patient's blood so the cells are quickly drawn to magnetically coated stents.

The research report appears in the Nov. 7 issue of the Journal of the American College of Cardiology (http://content.onlinejacc.org/). The Mayo team describes encouraging results from preclinical testing.

In the study, the cells were extracted from blood, and tiny iron-based paramagnetic particles were placed within the cells. Each stent was implanted through a tube (catheter) threaded through the blood vessels. Researchers then introduced the iron-tagged cells back into the blood vessel to test how well the magnetized stents captured the cells.

Because the healing cells -- also known as endothelial progenitor cells derived from circulating blood -- naturally fight blood clot formation, their swift magnetically guided arrival to the stent may reduce the chances of blood clot formation by lining the site fully and quickly, Mayo researchers say.

Results show a sixfold to 30-fold improvement in the magnetized stents' performance in capturing the healing endothelial cells, compared to the standard stents' ability to do so.

"The ability to rapidly coat implanted devices with living cells could accelerate local tissue healing and thereby reduce the risk of blood clot formation," says cardiologist Gurpreet Sandhu, M.D., Ph.D., lead investigator. "Our approach of magnetic cell targeting is the next generation of strategies for improving the safety of stents -- and it appears that magnetic forces may provide an elegant solution for cell capture. Additionally, this new magnetic targeting technology can be adapted to develop new cell-, gene- and drug-based treatments for cancer and other human diseases."

Dr. Sandhu adds that, while encouraging, the method is still experimental and not ready to be used on human patients. Researchers are refining their approach, including developing new biomaterials.

Significance of the Mayo Research

"Many people are currently concerned about the risk of blood clots associated in a small percentage of patients with the use of drug-eluting stents," says cardiologist and cardiac researcher Robert Simari, M.D., who co-authored the paper. "Our approach holds the potential to overcome the limitations of the current drug-eluting stent technology because we address the basic conditions of clot formation. One of the reasons clots can form in drug-eluting stent patients is that the area surrounding the stent is not relined fully or quickly enough with the cells in the body, called endothelial cells, that naturally fight blood clots. Our system delivers endothelial cells right where they need to be, rapidly, with the potential for limiting clot formation."

How It Works

Multiple steps led to the development of the new Mayo magnetic cell targeting stent system. For example, the researchers had to devise:

o a way to successfully get endothelial cells derived from blood and grown in lab dishes to live and proliferate when tagged with tiny amounts of magnetically responsive material known as iron-based paramagnetic microspheres.

o specially fabricated stainless steel stents coated with magnetic materials that demonstrated excellent ability to capture the magnetically tagged endothelial cells.

Traci Klein | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>