Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical 'artificial hearts' can remove need for heart transplant by returning heart to normal

03.11.2006
Mechanical 'artificial hearts' can be used to return severely failing hearts to their normal function, potentially removing the need for heart transplantation, according to new research.

The mechanical devices, known as Left Ventricular Assist Devices (LVADs), are currently used in patients with very severe heart failure whilst they await transplantation. The new study, published in the New England Journal of Medicine, shows that using an LVAD combined with certain drug therapies can shrink the enlarged heart and enable it to function normally once the LVAD is removed.

For the study, researchers from Imperial College London and the Royal Brompton and Harefield NHS Trust gave the full combination therapy to 15 severely ill patients. Of these 15, 11 recovered. Of these, 88 percent were free from recurrence of heart disease five years later. Their quality of life was measured as being at nearly normal.

Dr Emma Birks, from the Heart Science Centre at Imperial and the Royal Brompton and Harefield NHS Trust, and lead author of the study, said: "Donor heart transplant has for many years been the gold standard in the treatment of those with severe heart failure. It has proven greatly successful but is not without its shortcomings – particularly the shortage of donor hearts and the risk of organ rejection.

"This therapy has the potential to ease the pressure on the waiting list while also offering patients a better alternative to a donor heart – their own, healthy heart," she added.

Professor Sir Magdi Yacoub, from the Heart Science Centre at Imperial and the Royal Brompton and Harefield NHS Trust, said: "We are impressed by the dramatic, sustained improvement in the condition of these severely ill patients and we believe that this is due to the additive effects of the particular combination therapy used. The improvement observed was far greater than what has been reported to date for any other therapy in patients with severe, but less advanced, forms of heart failure.

"The study also highlights the fact that 'end stage' heart failure can be reversed and that the heart has the capacity to regenerate itself. It therefore stimulates the search for other strategies and more therapeutic targets in this expanding field of regenerative therapy," he added.

LVADs are currently mainly used in those patients awaiting heart transplant, whose heart failure is very severe. The researchers are hopeful that the technique used in this study could also be used to restore heart function amongst heart patients who are not awaiting transplants.

LVADs work by being connected to the left ventricle of the heart, either directly or by a tube. They remove oxygen rich blood from the left ventricle and take the blood to a mechanical pump. The mechanical pump then pumps the oxygen rich blood into another tube which is connected to the aorta. Once blood is in the aorta, it can be transported to the rest of the body.

Patients were treated with drugs which encourage reverse remodelling of the heart, prevent atrophy and prevent the heart from shrinking beyond its desirable size. The drugs used were lisinopril, carvedilol, spironolactone and losartan in the first stage of treatment and bisoprolol and clenbuterol in the second.

The next step for the researchers is a larger multi-centre trial named the Harefield Recovery Protocol (HARP) study, which is envisaged to start soon on both sides of the atlantic. The researchers are also continuing their molecular and cellular research and studying the mechanistic and therapeutic targets which have made the recovery observed in this study possible.

Laura Gallagher | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>