Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical 'artificial hearts' can remove need for heart transplant by returning heart to normal

03.11.2006
Mechanical 'artificial hearts' can be used to return severely failing hearts to their normal function, potentially removing the need for heart transplantation, according to new research.

The mechanical devices, known as Left Ventricular Assist Devices (LVADs), are currently used in patients with very severe heart failure whilst they await transplantation. The new study, published in the New England Journal of Medicine, shows that using an LVAD combined with certain drug therapies can shrink the enlarged heart and enable it to function normally once the LVAD is removed.

For the study, researchers from Imperial College London and the Royal Brompton and Harefield NHS Trust gave the full combination therapy to 15 severely ill patients. Of these 15, 11 recovered. Of these, 88 percent were free from recurrence of heart disease five years later. Their quality of life was measured as being at nearly normal.

Dr Emma Birks, from the Heart Science Centre at Imperial and the Royal Brompton and Harefield NHS Trust, and lead author of the study, said: "Donor heart transplant has for many years been the gold standard in the treatment of those with severe heart failure. It has proven greatly successful but is not without its shortcomings – particularly the shortage of donor hearts and the risk of organ rejection.

"This therapy has the potential to ease the pressure on the waiting list while also offering patients a better alternative to a donor heart – their own, healthy heart," she added.

Professor Sir Magdi Yacoub, from the Heart Science Centre at Imperial and the Royal Brompton and Harefield NHS Trust, said: "We are impressed by the dramatic, sustained improvement in the condition of these severely ill patients and we believe that this is due to the additive effects of the particular combination therapy used. The improvement observed was far greater than what has been reported to date for any other therapy in patients with severe, but less advanced, forms of heart failure.

"The study also highlights the fact that 'end stage' heart failure can be reversed and that the heart has the capacity to regenerate itself. It therefore stimulates the search for other strategies and more therapeutic targets in this expanding field of regenerative therapy," he added.

LVADs are currently mainly used in those patients awaiting heart transplant, whose heart failure is very severe. The researchers are hopeful that the technique used in this study could also be used to restore heart function amongst heart patients who are not awaiting transplants.

LVADs work by being connected to the left ventricle of the heart, either directly or by a tube. They remove oxygen rich blood from the left ventricle and take the blood to a mechanical pump. The mechanical pump then pumps the oxygen rich blood into another tube which is connected to the aorta. Once blood is in the aorta, it can be transported to the rest of the body.

Patients were treated with drugs which encourage reverse remodelling of the heart, prevent atrophy and prevent the heart from shrinking beyond its desirable size. The drugs used were lisinopril, carvedilol, spironolactone and losartan in the first stage of treatment and bisoprolol and clenbuterol in the second.

The next step for the researchers is a larger multi-centre trial named the Harefield Recovery Protocol (HARP) study, which is envisaged to start soon on both sides of the atlantic. The researchers are also continuing their molecular and cellular research and studying the mechanistic and therapeutic targets which have made the recovery observed in this study possible.

Laura Gallagher | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>