Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heel to heal

03.11.2006
New stretch relieves pain from plantar fasciitis

A new stretch is proving quite effective to help treat and potentially cure plantar fasciitis, a condition that affects nearly 2.5 million Americans each year. In a study recently published in Journal of Bone and Joint Surgery, researchers found that patients suffering from the painful heel spur syndrome had a 75 percent chance of having no pain and returning to full activity within three to six months of performing the stretch. In addition, patients have about a 75 percent chance of needing no further treatment.

The study is a two-year follow-up on 82 patients with plantar fasciitis, all of whom were part of an original clinical trial of 101 patients in 2003. The patients were taught a new stretch, specifically targeting the plantar fascia, that was developed by Benedict DiGiovanni, M.D., associate professor of orthopaedic surgery at the University of Rochester and author of the study, and Deborah Nawoczenski, P.T., Ph.D., professor of physical therapy at Ithaca College.

The stretch requires patients to sit with one leg crossed over the other, and stretch the arch of the foot by taking one hand and pulling the toes back toward the shin for a count of 10. The exercise must be repeated 10 times, and performed at least three times a day, including before taking the first step in the morning and before standing after a prolonged period of sitting. More than 90 percent of the patients were totally satisfied or satisfied with minor reservations, and noted distinct decrease in pain and activity limitations. The most common cause of heel pain, plantar fasciitis occurs when the plantar fascia, the flat band of tissue that connects your heel bone to your toes, is strained, causing weakness, inflammation and irritation. Common in middle-aged people as well as younger people who are on their feet a lot, like athletes or soldiers, people with plantar fasciitis experience extreme pain when they stand or walk. Plantar fasciitis can be a frustrating experience, as the chronic cycle of reinjury and pain can last for up to one year. DiGiovanni likens it to pulling a hamstring, and continuing to run without proper stretching. "Walking without stretching those foot tissues is just re-injuring yourself," he said.

Most physicians will recommend a non-surgical approach to treating plantar fasciitis, advising a regimen of anti-inflammatory medications, foot inserts, and stretches. Surgery occurs in about 5 percent of all cases, and has a 50 percent success rate of eliminating pain and allowing for full activity.

"Plantar fasciitis is everywhere, but we really haven't had a good handle on it," said DiGiovanni. "The condition often causes chronic symptoms and typically takes about nine to 10 months to burn itself out, and for people experiencing this pain, that's way too long to suffer through it."

DiGiovanni should know. He's experienced plantar fasciitis first-hand. Deciding to get some extra exercise on a golf outing one recent afternoon, he carried his clubs around all 18 holes instead of taking an easy-going ride in a golf cart. The next morning, he woke up with severe heel pain, which brought the topic of his study close to home.

"We need to further optimize non-operative treatments prior to considering surgical options," DiGiovanni said. "If you look at the results of the study, I think we've succeeded."

Germaine Reinhardt | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>