Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards predicting late-stage radiation toxicity

31.10.2006
Radiation is a brutal and in many cases necessary part of cancer therapy. More 50% of cancer patients receive radiotherapy as part of their treatment, and many experience concurrent negative side effects. In addition, a smaller fraction of patients develop severe late radiation toxicity, months or years after their treatment in normal tissues near the tumor site.

For example, in prostate cancer—a tumor in the prostate gland that lies between the bladder and the rectum—late radiation toxicity affects rectal, bladder, and sexual function in 5–10% of patients. A new study by Micheline Giphart-Gassler (Leiden University Medical Center) and colleagues published in the international open-access journal PLoS Medicine now suggests that in the future scientists might be able to tell who is at higher risk for such late toxicity and adjust treatments accordingly.

Scientists don’t know why some patients develop late radiation toxicity, but one theory is that some patients have a genetic predisposition. Giphart-Gassler and colleagues tested this by comparing radiation-induced changes in the gene expression profiles in blood cells from 21 patients who had late radiation toxicity after radiotherapy with the changes seen in cells from patients who did not developed such complications. Irradiation with X-rays induced the expression of numerous genes in the cells, including many known radiation-responsive genes. From those, the researchers derived a gene expression profile (or molecular signature) that was associated with late radiation toxicity. A signature based on the radiation response of 50 individual genes correctly classified 63% of the patient population in terms of whether they had developed late radiation toxicity. A signature based on the radiation response of gene sets containing genes linked by function or cellular localization correctly classified 86% of the patient population.

While these results are not robust enough to apply them in a clinical setting, they support the idea that some patients are genetically predisposed to develop late radiation toxicity and also provide clues about which cellular pathways might be involved. The study suggests that it might one day be possible to predict which patients are at high and at low risk for late-radiation toxicity, respectively, and adjust their treatment accordingly. The results also point to certain molecular pathways involved in response to radiation which might be targets for interventions that protect against the toxic side effects of radiation.

As Adrian Begg (Radboud University Medical Center) states in an accompanying Perspective article, these are intriguing, preliminary results on an important question that has been difficult to answer. Future studies are needed to determine whether expression profiles such as this one can serve as robust predictors of late radiation toxicity.

Citation: Svensson JP, Stalpers LJA, Esveldt–van Lange REE, Franken NAP, Haveman J, et al. (2006) Analysis of gene expression using gene sets discriminates cancer patients with and without late radiation toxicity. PLoS Med 3(10): e422.

Andrew Hyde | alfa
Further information:
http://www.plosmedicine.org

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>