Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards predicting late-stage radiation toxicity

31.10.2006
Radiation is a brutal and in many cases necessary part of cancer therapy. More 50% of cancer patients receive radiotherapy as part of their treatment, and many experience concurrent negative side effects. In addition, a smaller fraction of patients develop severe late radiation toxicity, months or years after their treatment in normal tissues near the tumor site.

For example, in prostate cancer—a tumor in the prostate gland that lies between the bladder and the rectum—late radiation toxicity affects rectal, bladder, and sexual function in 5–10% of patients. A new study by Micheline Giphart-Gassler (Leiden University Medical Center) and colleagues published in the international open-access journal PLoS Medicine now suggests that in the future scientists might be able to tell who is at higher risk for such late toxicity and adjust treatments accordingly.

Scientists don’t know why some patients develop late radiation toxicity, but one theory is that some patients have a genetic predisposition. Giphart-Gassler and colleagues tested this by comparing radiation-induced changes in the gene expression profiles in blood cells from 21 patients who had late radiation toxicity after radiotherapy with the changes seen in cells from patients who did not developed such complications. Irradiation with X-rays induced the expression of numerous genes in the cells, including many known radiation-responsive genes. From those, the researchers derived a gene expression profile (or molecular signature) that was associated with late radiation toxicity. A signature based on the radiation response of 50 individual genes correctly classified 63% of the patient population in terms of whether they had developed late radiation toxicity. A signature based on the radiation response of gene sets containing genes linked by function or cellular localization correctly classified 86% of the patient population.

While these results are not robust enough to apply them in a clinical setting, they support the idea that some patients are genetically predisposed to develop late radiation toxicity and also provide clues about which cellular pathways might be involved. The study suggests that it might one day be possible to predict which patients are at high and at low risk for late-radiation toxicity, respectively, and adjust their treatment accordingly. The results also point to certain molecular pathways involved in response to radiation which might be targets for interventions that protect against the toxic side effects of radiation.

As Adrian Begg (Radboud University Medical Center) states in an accompanying Perspective article, these are intriguing, preliminary results on an important question that has been difficult to answer. Future studies are needed to determine whether expression profiles such as this one can serve as robust predictors of late radiation toxicity.

Citation: Svensson JP, Stalpers LJA, Esveldt–van Lange REE, Franken NAP, Haveman J, et al. (2006) Analysis of gene expression using gene sets discriminates cancer patients with and without late radiation toxicity. PLoS Med 3(10): e422.

Andrew Hyde | alfa
Further information:
http://www.plosmedicine.org

More articles from Health and Medicine:

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017 | Life Sciences

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>