Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s University Researchers Pioneer Food Safety Testing

30.10.2006
With international demand amongst consumers and regulators for improved food safety never greater, a research project at Queen’s University Belfast, led by Professor Chris Elliott, and using the latest techniques in Nanotechnology, has resulted in the development of a new biosensor test kit capable of detecting an entire family of toxic drugs in foods.

The drug group, known as Nitroimidazoles, was once widely used in veterinary medicine to treat animal disease such as anaerobic bacterial and parasitic infections, but concerns over the safety of the drugs led to them being banned for use in animal production. However, due to their effectiveness in the treatment of certain diseases and the difficultly in detecting the misuse of the drugs, it has been alleged that widespread use of these drugs in some parts of the world still persists. The presence or absence of such drug residues in food commodities has major implications in respect to both food safety and international trade.

Funded by the Invest Northern Ireland ‘Proof of Concept’ programme, Professor Elliott, Head of the Food Safety Research Group at Queen’s, has now used the latest techniques in Nanotechnology to provide an innovative food-testing kit for such residues that is exceptionally rapid and reliable in comparison to the complex, costly and time-consuming monitoring systems currently available.

Many or even most of the food ingredients eaten every day contain nanoscale particles and naturally occurring nanoscale ingredients and the value of nanotechnology to the food industry has been estimated at £220 million in 2006. That figure is expected to grow to over £3 billion by 2012.

Having developed the reagents involved and optimised an analytical procedure using an optical biosensor to detect the presence of the drugs in foods, Professor Elliott and his team then sent a prototype test kit to regulatory laboratories around the world. The results of this multi-national validation exercise proved the kit could actually detect the compounds involved to the low parts per billion (ppb) levels required. This in turn, generated high levels of interest from the major regulatory bodies involved and several commercial entities, before Xenosense Ltd, a Northern Ireland based biosensor kit manufacturer agreed to commercialise the product.

Speaking about the revolutionary new kit and the commercialisation process, Professor Elliott said: “It is projects like this that illustrate the importance of the viable research being performed at Queen’s Institute of Agri-Food and Land Use, in addressing current food safety issues and in being able to transfer that knowledge through to the advantage of local industry.

“To have a company such as Xenosense Ltd, a Northern Ireland based biosensor kit manufacturer and one of our spin out companies from Queen’s through the QUBIS operation, agree to commercialise the method and offer the product to both the global market of regulatory laboratories and the Agri-Food Industry, is proof positive of the value of our work.

“The official launch of the new product is planned for later this year and we are delighted that with the help of Invest NI, we have taken a locally funded research programme and converted it into a commercially viable end product which will make a real difference to people’s lives.”

John Thompson, Director of Innovation, Research and Technology at Invest NI added: “Proof of Concept has proven itself to be a vital source of assistance for innovative research projects undertaken at both Queen’s University and the University of Ulster.

“By supporting the pre-commercialisation of leading-edge technologies emerging from Northern Ireland’s universities, Proof of Concept can support researchers as they bring inventions and ideas into the global marketplace – adding wealth to our economy and further reinforcing Northern Ireland as a world class research and development hub.”

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>