Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s University Researchers Pioneer Food Safety Testing

30.10.2006
With international demand amongst consumers and regulators for improved food safety never greater, a research project at Queen’s University Belfast, led by Professor Chris Elliott, and using the latest techniques in Nanotechnology, has resulted in the development of a new biosensor test kit capable of detecting an entire family of toxic drugs in foods.

The drug group, known as Nitroimidazoles, was once widely used in veterinary medicine to treat animal disease such as anaerobic bacterial and parasitic infections, but concerns over the safety of the drugs led to them being banned for use in animal production. However, due to their effectiveness in the treatment of certain diseases and the difficultly in detecting the misuse of the drugs, it has been alleged that widespread use of these drugs in some parts of the world still persists. The presence or absence of such drug residues in food commodities has major implications in respect to both food safety and international trade.

Funded by the Invest Northern Ireland ‘Proof of Concept’ programme, Professor Elliott, Head of the Food Safety Research Group at Queen’s, has now used the latest techniques in Nanotechnology to provide an innovative food-testing kit for such residues that is exceptionally rapid and reliable in comparison to the complex, costly and time-consuming monitoring systems currently available.

Many or even most of the food ingredients eaten every day contain nanoscale particles and naturally occurring nanoscale ingredients and the value of nanotechnology to the food industry has been estimated at £220 million in 2006. That figure is expected to grow to over £3 billion by 2012.

Having developed the reagents involved and optimised an analytical procedure using an optical biosensor to detect the presence of the drugs in foods, Professor Elliott and his team then sent a prototype test kit to regulatory laboratories around the world. The results of this multi-national validation exercise proved the kit could actually detect the compounds involved to the low parts per billion (ppb) levels required. This in turn, generated high levels of interest from the major regulatory bodies involved and several commercial entities, before Xenosense Ltd, a Northern Ireland based biosensor kit manufacturer agreed to commercialise the product.

Speaking about the revolutionary new kit and the commercialisation process, Professor Elliott said: “It is projects like this that illustrate the importance of the viable research being performed at Queen’s Institute of Agri-Food and Land Use, in addressing current food safety issues and in being able to transfer that knowledge through to the advantage of local industry.

“To have a company such as Xenosense Ltd, a Northern Ireland based biosensor kit manufacturer and one of our spin out companies from Queen’s through the QUBIS operation, agree to commercialise the method and offer the product to both the global market of regulatory laboratories and the Agri-Food Industry, is proof positive of the value of our work.

“The official launch of the new product is planned for later this year and we are delighted that with the help of Invest NI, we have taken a locally funded research programme and converted it into a commercially viable end product which will make a real difference to people’s lives.”

John Thompson, Director of Innovation, Research and Technology at Invest NI added: “Proof of Concept has proven itself to be a vital source of assistance for innovative research projects undertaken at both Queen’s University and the University of Ulster.

“By supporting the pre-commercialisation of leading-edge technologies emerging from Northern Ireland’s universities, Proof of Concept can support researchers as they bring inventions and ideas into the global marketplace – adding wealth to our economy and further reinforcing Northern Ireland as a world class research and development hub.”

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>