Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umeå researchers find ulcer bacteria in blood

27.10.2006
In the journal PloS, Professor Thomas Borén and his research team at Umeå University in Sweden, working together with scientists in Methesda, Maryland, show for the first time that the so-called ulcer bacterium, Helicobacter pylori can spread to and via the blood.

It was shown conclusively in the 1980s that ulcers are caused by the bacterium Helicobacter pylori, a discovery that earned two Australian scientists the Nobel Prize for Medicine in 2005. It is also well established today that a Helicobacter infection is the greatest risk factor for stomach cancer, one of our most common cancer forms.

The adhesion of this bacterium to the mucous lining of the stomach is generally seen as an important first stage in developing symptoms and incipient disease, such as gastritus. To be able to stick to cell surfaces, H. pylori uses so-called adhesive proteins. They are located on the surface of the bacterium and attach to various sugar molecules on the surface of the stomach cells, which provides the bacteria with a firm grip in the turbulent environment of the stomach.

In the article it is now shown that in an infection the bacteria make their way beyond the cell surfaces of the stomach to the underlying blood vessels. Once there, they can also get through the vessel walls and attach to red blood corpuscles. In this way, Helicobacter can transport themselves elsewhere in the body.

Marina Aspholm, the lead author of this work, has also succeeded in showing that H. pylori use the so-called SabA protein in their adhesion to red corpuscles. What’s more, this protein was shown to vary somewhat across Helicobacter bacteria from different patients. This means that the SabA protein is able to adapt to individuals in order to attain the best adhesion.

During an infection, H. pylori can thus adapt its adhesive properties both to the individual stomach lining and to the changes that take place there in the course of a chronic infection and inflammation.

Hans Fällman | alfa
Further information:
http://pathogens.plosjournals.org/
http://www.umu.se

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>