Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Imaging Technique To Discover Connection Differences in Brains of People With Autism

25.10.2006
Using a new form of brain imaging known as diffusion tensor imaging (DTI), researchers in the Center for Cognitive Brain Imaging at Carnegie Mellon University have discovered that the so-called white matter in the brains of people with autism has lower structural integrity than in the brains of normal individuals. This provides further evidence that the anatomical differences characterizing the brains of people with autism are related to the way those brains process information.

The results of this latest study were published in the journal NeuroReport. The scientists used DTI — which tracks the movement of water through brain tissue — to measure the structural integrity of the white matter that acts as cables to wire the parts of the brain together.

Normally, water molecules move, or diffuse, in a direction parallel to the orientation of the nerve fibers of the white matter. They're aided by the coherent structure of the fibers and a process called myelination, in which a sheath is formed around the fibers that speeds nerve impulses. The movement of water is more dispersed if the structural integrity of the tissue is low — i.e., if the fibers are less dense, less coherently organized, or less myelinated — as it was with the participants with autism in the Carnegie Mellon study. Researchers found this dispersed pattern particularly in areas in and around the corpus callosum, the large band of nerve fibers that connects the two hemispheres of the brain.

"These reductions in white matter integrity may underlie the behavioral pattern observed in autism of narrowly focused thought and weak coherence of different streams of thought," said Marcel Just, director of the Center for Cognitive Brain Imaging and a co-author of the latest study. "The new findings also provide supporting evidence for a new theory of autism that attributes the disorder to underconnectivity among brain regions," Just said.

In 2004, Just and his colleagues proposed the underconnectivity theory based on a groundbreaking study in which they discovered abnormalities in the white matter that suggested a lack of coordination among brain areas in people with autism. This theory helps explain a paradox of autism: Some people with autism have normal or even superior skills in some areas, while many other types of thinking are disordered.

Last summer, Just led a team of researchers that found for the first time that the abnormality in synchronization among brain areas is related to the abnormality in the white matter. They discovered that key portions of the corpus callosum seem to play a role in the limitation on synchronization. In people with autism, anatomical connectivity — based on the size of the white matter — was found to be positively correlated with functional connectivity, which is the synchronization of the active brain regions. They also found that the functional connectivity was lower in those participants in whom the autism was more severe.

These studies, along with the latest paper, are providing a comprehensive picture of the autistic brain, whose components operate with less coordination than is normally the case, and which is less reliant on frontal components and more reliant on posterior components. The latest DTI finding shows that some of the frontal-posterior communication fiber tracts are abnormal, consistent with the lower degree of frontal-posterior coordination.

"The brain components in autism function more like a jam session and less like a symphony," Just said.

The latest study was co-authored by Rajesh K. Kana and Timothy A. Keller of the Center for Cognitive Brain Imaging. This research was supported by the National Institute of Child Health and Human Development.

Jonathan Potts | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>