Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Insights into activity-dependent neuronal growth through RSRF-supported research

Brain-derived neurotrophic factor (BDNF) has been a subject of keen interest in neuroscientific circles for several years, turning up in studies of conditions ranging from central hypoventilation syndrome to obsessive-compulsive disorder, depression, bipolar disorder and schizophrenia -- a range of disorders uncannily parallel to those produced by mutations in the "Rett gene," MeCP2.

In 2003, two groups found that MeCP2 regulates BDNF transcription, but sorting out the complex relationship between the two proteins has been quite challenging. New studies from the labs of Michael Greenberg at Children's Hospital Boston and David Katz at Case Western School of Medicine have begun to shed light on the interplay of MeCP2 and BDNF.

Because Rett syndrome (RTT) develops during early childhood, when sensory experiences normally stimulate the development of synaptic circuits, some researchers hypothesized that the fundamental defect in RTT is a failure of synaptic plasticity or maturation. Early support for this hypothesis came from studies showing that MeCP2 expression normally increases as neurons mature. Conversely, RTT patients and mice lacking MeCP2 suffer defects in synaptic plasticity, learning and memory, all of which are dependent on experience – so there is some link between experience and the change in neuronal function it would normally produce that is missing when MeCP2 is not functioning properly.

Zhou et al. (Greenberg lab) have found at least part of that missing link. In a paper just published in Neuron, they show that increases in neuronal activity result in phosphorylation of MeCP2 at a particular residue (S421) which, in turn, increases transcription of certain genes, including Bdnf, that are required for experience-dependent brain maturation. They further show that phosphorylation of MeCP2 at S421 is required for structural modifications of neurons that underlie the maturational process. Moreover, they identified a complex regulatory loop in which BDNF feeds back to trigger phosphorylation of MeCP2, suggesting that BDNF and neuronal activity may cooperate in regulating MeCP2 function. Finally, this study shows that MeCP2 phosphorylation at S421 occurs only in the brain and not in other tissues. Disruption of this specific phosphorylation mechanism could explain why RTT primarily affects brain function, despite the fact that cells throughout the body express MeCP2. The authors also may have found an explanation for the sleep disturbances that are a frequent complication of RTT: one of the brain regions in which they observed activity-dependent phosphorylation of MeCP2 at S421 is involved in regulating circadian rhythms, including the sleep-wake cycle.

New work by Wang et al. (Katz lab) published in the Journal of Neuroscience examines another aspect of how mutations in MeCP2 disrupt BDNF signaling, namely, the relationship between how much BDNF a neuron expresses and how much is released. Normally, synaptic maturation and function are regulated by precise coupling of activity dependent BDNF expression and secretion. This balance is disrupted in MeCP2-deficient neurons, however, by two factors. On the one hand, mutant neurons exhibit a progressive decline in BDNF content after birth; the timing of this decline varies among different brain regions. On the other hand, mutant neurons release a greater percentage of their BDNF content. Thus, early in development, MeCP2 deficient neurons release more BDNF than normal cells. Such hypersecretion of BDNF in newborn MeCP2-deficient neurons may disturb the delicate, tightly regulated developmental processes elicited by changes in experience-dependent neuronal activity. Eventually, BDNF content declines so much that mutant cells release less BDNF than normal, which is likely to result in synaptic dysfunction. The authors further found that secretory defects are not restricted to neurons that release BDNF. Release of adrenal hormones called catecholamines, which play a key role in the body's response to stress, is also abnormally high in MeCP2- deficient cells. Wang et al. hypothesize that secretory defects could be a common thread contributing to dysfunction of multiple neural systems in RTT.

Monica Coenraads | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>